Question Number 156086 by MathSh last updated on 07/Oct/21 $$\psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{6}}\right)\:-\:\psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{5}}{\mathrm{6}}\right)\:=\:\mathrm{10}\psi^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:-\:\frac{\mathrm{20}}{\mathrm{3}}\pi^{\mathrm{2}} \\ $$$$ \\ $$ Commented by puissant last updated on 09/Oct/21 $$\psi^{\left(\mathrm{1}\right)}…
Question Number 90550 by jagoll last updated on 24/Apr/20 $${x}^{\mathrm{4}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{527}\: \\ $$$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\:?\: \\ $$ Commented by jagoll last updated on 24/Apr/20 Commented by…
Question Number 25001 by Tinkutara last updated on 30/Nov/17 $$\mathrm{If}\:{x},\:{y}\:>\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{x}}\:−\:\mathrm{2}{x}\:+\:\mathrm{2}{y}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{y}}\:−\:\mathrm{2}{y}\:+\:\mathrm{2}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$ Commented by prakash jain last updated on…
Question Number 156061 by mathlove last updated on 07/Oct/21 Answered by TheSupreme last updated on 07/Oct/21 $$\mathrm{2}{xy}=\mathrm{3}{x}+\mathrm{2}{y} \\ $$$${xz}=−\mathrm{20}{x}+\mathrm{12}{z} \\ $$$$\mathrm{2}{yz}=−\mathrm{12}{y}+\mathrm{15}{z} \\ $$$$ \\ $$$${y}\left(\mathrm{2}{z}+\mathrm{12}\right)=\mathrm{15}{z}…
Question Number 156063 by cortano last updated on 07/Oct/21 $$\:\:\:\:\frac{\mathrm{2}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{4}}{\mathrm{x}+\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{x}+\mathrm{3}}+\frac{\mathrm{6}}{\mathrm{x}+\mathrm{4}}=\mathrm{5} \\ $$ Commented by john_santu last updated on 07/Oct/21 $${x}=\left\{\mathrm{2},\:−\mathrm{2}\pm\:\sqrt{\frac{\mathrm{15}\pm\sqrt{\mathrm{145}}}{\mathrm{10}}}\:\right\} \\ $$ Commented by Tawa11…
Question Number 156049 by MathSh last updated on 07/Oct/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90483 by M±th+et£s last updated on 23/Apr/20 $${prove}\:{that}/\:\frac{{sin}^{\mathrm{3}} {a}}{{sin}\:{b}}+\frac{{cos}^{\mathrm{3}} {a}}{{cos}\:{b}}\geqslant{sec}\left({a}−{b}\right) \\ $$$${for}\:{all}\:{a},{b}\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90473 by I want to learn more last updated on 23/Apr/20 Commented by MJS last updated on 24/Apr/20 you want to learn more. I want to know if you have got any idea what a "proper ideal" might be. Commented by I want…
Question Number 155991 by cortano last updated on 07/Oct/21 $$\:\begin{cases}{\mathrm{a}\left(\mathrm{x}+\mathrm{2}\right)+\mathrm{y}=\mathrm{3a}}\\{\mathrm{a}+\mathrm{2x}^{\mathrm{3}} =\mathrm{y}^{\mathrm{3}} +\left(\mathrm{a}+\mathrm{2}\right)\mathrm{x}^{\mathrm{3}} }\end{cases} \\ $$$$\:\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\&\mathrm{y}\:\mathrm{in}\:\mathrm{term}\:\mathrm{a} \\ $$ Commented by Rasheed.Sindhi last updated on 07/Oct/21 $${Mr}\:{cortano},\:{if}\:{you}\:{want}\:{answer}…
Question Number 24908 by Tinkutara last updated on 28/Nov/17 $$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{prove} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}: \\ $$$$\frac{{a}}{{c}\:+\:{a}\:−\:{b}}\:+\:\frac{{b}}{{a}\:+\:{b}\:−\:{c}}\:+\:\frac{{c}}{{b}\:+\:{c}\:−\:{a}}\:\geqslant\:\mathrm{3}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com