Menu Close

Category: Algebra

0-1-x-49-1-x-x-2-x-3-x-100-dx-

Question Number 155619 by mathdanisur last updated on 02/Oct/21 $$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{49}} }{\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \:…\:\mathrm{x}^{\mathrm{100}} }\:\mathrm{dx}\:=\:? \\ $$ Answered by mindispower last updated on 04/Oct/21…

if-x-y-R-and-x-3-y-3-16-prove-that-x-4-y-4-2x-2-y-2-4x-36-

Question Number 155618 by mathdanisur last updated on 02/Oct/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y}\in\mathbb{R}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{16}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\geqslant\:\mathrm{4x}\:+\:\mathrm{36} \\ $$ Terms of Service Privacy Policy…

Prove-that-i-n-0-n-2-n-2e-ii-n-0-n-3-n-5e-iii-n-0-n-4-n-15e-

Question Number 24540 by Tinkutara last updated on 20/Nov/17 $${Prove}\:{that} \\ $$$$\left({i}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!}=\mathrm{2}{e}. \\ $$$$\left({ii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!}=\mathrm{5}{e}. \\ $$$$\left({iii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{4}} }{{n}!}=\mathrm{15}{e}.…

Question-155594

Question Number 155594 by mathdanisur last updated on 02/Oct/21 Answered by ghimisi last updated on 02/Oct/21 $$\Leftrightarrow\Sigma\left(\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\right)\geqslant\mathrm{0} \\ $$$$\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}}…

Evaluate-the-limit-and-prove-by-the-definition-that-as-n-for-z-1-2-z-1-n-1-n-z-2-

Question Number 155585 by mathdanisur last updated on 02/Oct/21 $$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{by}\:\mathrm{the} \\ $$$$\varepsilon−\delta\:\mathrm{definition}\:\mathrm{that}\:\mathrm{as}\:\mathrm{n}\rightarrow\infty\:\mathrm{for}\:\mathrm{z}\geqslant\mathrm{1} \\ $$$$\left(\mathrm{2}\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{z}}\:−\:\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:\rightarrow\:\mathrm{z}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com