Menu Close

Category: Algebra

If-x-lt-1-then-x-1-x-2-1-x-4-1-x-8-1-x-16-1-is-equal-to-

Question Number 24286 by Joel577 last updated on 15/Nov/17 $$\mathrm{If}\:\mid{x}\mid\:<\:\mathrm{1}\:\mathrm{then} \\ $$$$\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)….. \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$ Answered by mrW1 last updated…

Solve-the-equation-in-R-5-x-1-1-x-x-2-2-x-1-4x-2-5x-5-

Question Number 155345 by mathdanisur last updated on 29/Sep/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{5}\sqrt{\mathrm{x}+\mathrm{1}}}{\:\sqrt{\mathrm{1}\:-\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} }\:+\:\mathrm{2}\sqrt{\mathrm{x}\:+\:\mathrm{1}}}\:=\:\mathrm{4x}^{\mathrm{2}} \:-\:\mathrm{5x}\:+\:\mathrm{5} \\ $$ Commented by MJS_new last updated on 29/Sep/21 $$\mathrm{no}\:\mathrm{real}\:\mathrm{solution} \\…

true-or-false-1-1-1-3-1-1-2-3-1-1-3-3-1-1-n-3-lt-3-

Question Number 89794 by M±th+et£s last updated on 19/Apr/20 $${true}\:{or}\:{false} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\right)…..\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)<\mathrm{3} \\ $$ Commented by mr W last updated on…

Question-89795

Question Number 89795 by A8;15: last updated on 19/Apr/20 Answered by MJS last updated on 19/Apr/20 $$\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} =\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{1}=\left({x}^{\mathrm{2}}…

Evaluate-lim-n-n-n-2-

Question Number 155295 by mathdanisur last updated on 28/Sep/21 $$\mathrm{Evaluate}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\Sigma\:\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:=\:? \\ $$ Commented by mathdanisur last updated on 28/Sep/21 $$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$ Commented…