Question Number 155136 by amin96 last updated on 25/Sep/21 $$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\boldsymbol{\mathrm{log}}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left(\boldsymbol{{n}}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}^{\boldsymbol{{n}}} }+\boldsymbol{\mathrm{log}}\left(\mathrm{2}\right)\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{2}^{\boldsymbol{{n}}} }+\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{4}} \mathrm{2}^{\boldsymbol{{n}}} }=…
Question Number 24069 by Joel577 last updated on 12/Nov/17 $$\mathrm{Simplify} \\ $$$$\frac{\left(\mathrm{log}_{\mathrm{2}} \:\sqrt{\mathrm{5}}\:.\:\mathrm{log}_{\mathrm{25}} \:\mathrm{20}\right)\:+\:\mathrm{log}_{\mathrm{4}} \:\sqrt{\mathrm{50}}\:\:}{\mathrm{log}_{\mathrm{4}} \:\mathrm{70}\:−\:\mathrm{log}_{\mathrm{15}} \:\mathrm{49}} \\ $$ Answered by $@ty@m last updated on…
Question Number 155132 by mathdanisur last updated on 25/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89592 by M±th+et£s last updated on 18/Apr/20 $${cos}\left({x}\right)={k}\: \\ $$$$\left\{−\mathrm{1}\leqslant{k}<\mathrm{0}\right\} \\ $$ Commented by mr W last updated on 18/Apr/20 $${i}\:{don}'{t}\:{understand}\:{what}'{s}\:{your}\:{problem}. \\ $$$$…
Question Number 155130 by mathdanisur last updated on 25/Sep/21 Answered by mr W last updated on 26/Sep/21 Commented by mathdanisur last updated on 26/Sep/21 $$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{how}\:\mathrm{proved}\:\mathrm{please}…
Question Number 155126 by tabata last updated on 25/Sep/21 $$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−\:\beta\:\left(\mathrm{2}{x}+{b}\right)^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} } \:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89586 by Asif Hypothesis last updated on 18/Apr/20 $$ \\ $$$$\mathrm{2018}^{\mathrm{2019}} −\mathrm{2019}^{\mathrm{2018}\:} \equiv?\:\left({mod}\:\mathrm{4}\right) \\ $$ Answered by Asif Hypothesis last updated on 18/Apr/20…
Question Number 155106 by mathdanisur last updated on 25/Sep/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}+\mathrm{y}}\:-\:\sqrt{\mathrm{x}-\mathrm{y}}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{5}}\\{\mathrm{2x}\:+\:\mathrm{3}\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{19}}\end{cases} \\ $$ Commented by benhamimed last updated on 25/Sep/21…
Question Number 155100 by mathdanisur last updated on 25/Sep/21 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{with}: \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{semiperimetr}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{area}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{with}\:\mathrm{perimetr}. \\ $$ Commented by MJS_new last updated…
Question Number 155083 by Tawa11 last updated on 25/Sep/21 Answered by physicstutes last updated on 25/Sep/21 $$\left(\mathrm{a}\right)\:{f}\left({x}\right)=\:\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\:,\:{x}\:\neq\mathrm{0} \\ $$$${f}\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{differentiable}\:\mathrm{on}\:−\mathrm{1}<{x}<\mathrm{1} \\ $$$$\left(\mathrm{b}\right)\:{g}\left({x}\right)=\mid{x}\mid\:\mathrm{is}\:\mathrm{not}\:\mathrm{differentiable}\:\mathrm{on} \\ $$$$−\mathrm{1}<{x}<\mathrm{1} \\…