Menu Close

Category: Algebra

if-x-y-z-0-then-2-cyc-x-2-x-2-y-2-cyc-x-x-3-z-3-xyz-x-y-z-

Question Number 158276 by HongKing last updated on 01/Nov/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{then}: \\ $$$$\mathrm{2}\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\:\geqslant\:\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\mathrm{x}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \right)\:+\:\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right) \\ $$$$ \\ $$ Terms of…

Question-158272

Question Number 158272 by HongKing last updated on 01/Nov/21 Answered by qaz last updated on 04/Nov/21 $$\Omega=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}{\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}}…

Solve-for-complex-numbers-x-4-1-i-x-3-2ix-2-i-1-x-1-0-

Question Number 158274 by HongKing last updated on 01/Nov/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{complex}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\left(\mathrm{1}\:+\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:+\:\mathrm{2}\boldsymbol{\mathrm{ix}}^{\mathrm{2}} \:+\:\left(\boldsymbol{\mathrm{i}}\:-\:\mathrm{1}\right)\boldsymbol{\mathrm{x}}\:-\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by mindispower last updated on…

Solve-x-y-y-x-i-3-x-15-y-ii-x-y-x-y-R-

Question Number 92727 by I want to learn more last updated on 08/May/20 $$\mathrm{Solve}:\:\:\:\:\:\mathrm{x}^{\mathrm{y}} \:\:=\:\:\mathrm{y}^{\mathrm{x}} \:\:\:\:\:…….\:\:\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{x}} \:\:=\:\:\mathrm{15}^{\mathrm{y}} \:\:\:\:……\:\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\mathrm{x}\:\:\neq\:\:\mathrm{y},\:\:\:\:\:\:\:\mathrm{x},\:\:\mathrm{y}\:\in\:\mathbb{R} \\ $$ Answered…

Question-92717

Question Number 92717 by mr W last updated on 08/May/20 Commented by i jagooll last updated on 09/May/20 $$\left(\mathrm{1}\right)\:\mathrm{x}^{\mathrm{3}} +\mathrm{9x}^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{10} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{27y}^{\mathrm{3}} +\mathrm{27xy}^{\mathrm{2}} \:=\:\mathrm{54}…