Question Number 154677 by mathdanisur last updated on 20/Sep/21 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}^{\mathrm{9}} \:-\:\mathrm{256x}^{\mathrm{3}} \:-\:\mathrm{791}}{\mathrm{84x}^{\mathrm{3}} }\:=\:\sqrt[{\mathrm{3}}]{\mathrm{4x}\:+\:\mathrm{7}} \\ $$ Commented by MJS_new last updated on 20/Sep/21 $$\frac{{x}^{\mathrm{9}}…
Question Number 154675 by mathdanisur last updated on 20/Sep/21 $$\mathrm{if}\:\mathrm{we}\:\mathrm{let} \\ $$$$\mathrm{f}\left(\mathrm{n}\right)\:=\:\frac{\mathrm{n}}{\mathrm{2}}\:\left(\mathrm{n}\:+\:\mathrm{1}\right) \\ $$$$\mathrm{then}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{n}\right)\right)\right)\right)\:=\:\frac{\mathrm{1}}{\mathrm{32}} \\ $$ Answered by MJS_new last updated on 20/Sep/21…
Question Number 89130 by 43100Maryam last updated on 15/Apr/20 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 89125 by pete last updated on 15/Apr/20 Answered by MJS last updated on 15/Apr/20 $$\mathrm{We}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$${x}\approx\mathrm{1}.\mathrm{69010} \\ $$ Terms of Service Privacy…
Question Number 154649 by mathdanisur last updated on 20/Sep/21 $$\mathrm{if}\:\:\mathrm{n}\:\in\:\mathbb{N}^{>\mathrm{2}} \:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\left[\left(\sqrt[{\mathrm{3}}]{\mathrm{n}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{n}\:+\:\mathrm{2}}\:\right)^{\mathrm{3}} \right]\:+\:\mathrm{1}\:=\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$ Commented by MJS_new last updated on 20/Sep/21 $$\mathrm{just}\:\mathrm{a}\:\mathrm{try} \\…
Question Number 154651 by mathdanisur last updated on 20/Sep/21 $$\mathrm{let}\:\mathrm{be}\:\:\boldsymbol{\mathrm{A}}\:=\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\:\:;\:\:\boldsymbol{\mathrm{B}}\:=\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{find}\:\:\boldsymbol{\Omega}\:=\:\mathrm{e}^{\boldsymbol{\mathrm{A}}} \:\centerdot\:\left(\mathrm{e}^{\boldsymbol{\mathrm{B}}} \right)^{−\mathrm{1}} \\ $$$$\left(\mathrm{e}^{\boldsymbol{\mathrm{A}}} \:-\:\mathrm{exponential}\:\mathrm{matrix}\right) \\ $$ Answered by TheHoneyCat last updated on…
Question Number 154648 by mathdanisur last updated on 20/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 154647 by mathdanisur last updated on 20/Sep/21 $$\mathrm{f}\::\:\mathrm{Q}\:\rightarrow\:\mathrm{Q} \\ $$$$\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{f}\left(\mathrm{y}\right)\right)\:=\:\mathrm{y}\:+\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\forall\:\mathrm{x};\mathrm{y}\:\in\:\mathrm{Q} \\ $$ Answered by TheHoneyCat last updated on 20/Sep/21 $$\mathrm{I}\:\mathrm{demote}\:\mathrm{by}\:{f}^{{n}} \::\:{f}\circ…\circ{f}\:{n}\:\mathrm{times}…
Question Number 23566 by NECx last updated on 01/Nov/17 $$\left(\frac{{a}}{{b}}\right)^{\mathrm{log}\:{c}} .\left(\frac{{b}}{{c}}\right)^{\mathrm{log}\:{a}} .\left(\frac{{c}}{{a}}\right)^{\mathrm{log}\:{b}} =\mathrm{1}. \\ $$$$ \\ $$$${make}\:\frac{{logc}}{{c}}\:{the}\:{subject}\:{of}\:{formula} \\ $$ Commented by NECx last updated on…
Question Number 89107 by unknown last updated on 15/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com