Menu Close

Category: Algebra

Common-solution-d-dy-u-x-u-2x-2-y-u-x-u-0-

Question Number 23479 by ANTARES_VY last updated on 31/Oct/17 $$\boldsymbol{\mathrm{Common}}\:\:\boldsymbol{\mathrm{solution}}. \\ $$$$\frac{\boldsymbol{\mathfrak{d}}}{\boldsymbol{\mathfrak{d}\mathrm{y}}}\left(\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{u}}\right)+\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}\left(\boldsymbol{\mathrm{u}}_{\boldsymbol{\mathrm{x}}} +\boldsymbol{\mathrm{u}}\right)=\mathrm{0}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Prove-that-0-i-lt-j-n-1-n-C-i-1-n-C-j-r-0-n-1-n-r-n-C-r-r-1-n-r-n-C-r-

Question Number 23471 by Tinkutara last updated on 31/Oct/17 $${Prove}\:{that} \\ $$$$\underset{\mathrm{0}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left(\frac{\mathrm{1}}{\:^{{n}} {C}_{{i}} }\:+\:\frac{\mathrm{1}}{\:^{{n}} {C}_{{j}} }\right)\:=\:\underset{{r}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{n}\:−\:{r}}{\:^{{n}} {C}_{{r}} }\:+\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{r}}{\:^{{n}} {C}_{{r}} }…

Solve-the-equations-a-2-2x-3-x-3x-2-3x-2-b-x-4-16-2-2-x-2-4-3x-2-

Question Number 154497 by mathdanisur last updated on 18/Sep/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\:\:\sqrt{\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{16}}{\mathrm{2}}}\:+\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right)}\:=\:\mathrm{3x}\:+\:\mathrm{2} \\ $$ Answered by ARUNG_Brandon_MBU last updated…

If-a-b-c-gt-0-and-n-N-then-a-2n-b-2n-c-2n-a-n-b-n-b-n-c-n-c-n-a-n-3-a-2-b-2-c-2-a-b-c-

Question Number 154493 by mathdanisur last updated on 18/Sep/21 $$\mathrm{If}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{n}\in\mathbb{N}^{+} \:\:\mathrm{then}: \\ $$$$\frac{\mathrm{a}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:+\:\mathrm{c}^{\mathrm{2}\boldsymbol{\mathrm{n}}} }{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \mathrm{b}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} \mathrm{c}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{c}^{\boldsymbol{\mathrm{n}}} \mathrm{a}^{\boldsymbol{\mathrm{n}}} }\:\geqslant\:\frac{\sqrt{\mathrm{3}\centerdot\left(\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \right)}}{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}}…

if-S-n-t-n-1-t-n-1-2t-n-1-1-n-1-t-n-2t-n-1-n-t-with-t-gt-0-then-lim-n-S-n-t-te-t-

Question Number 154495 by mathdanisur last updated on 18/Sep/21 $$\mathrm{if}\:\:\mathrm{S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{n}^{\mathrm{1}-\boldsymbol{\mathrm{t}}} \:\left(\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}+\mathrm{1}}]{\left(\mathrm{n}+\mathrm{1}\right)!}\right)^{\boldsymbol{\mathrm{t}}} }\:-\:\frac{\mathrm{n}^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\right)^{\boldsymbol{\mathrm{t}}} }\right) \\ $$$$\mathrm{with}\:\:\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{then}\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{te}^{\boldsymbol{\mathrm{t}}} \\ $$ Answered…

find-x-y-x-2y-xy-0-x-1-2y-1-1-

Question Number 88921 by M±th+et£s last updated on 13/Apr/20 $${find}\:{x},{y} \\ $$$${x}−\mathrm{2}{y}−\sqrt{{xy}}=\mathrm{0} \\ $$$$\sqrt{{x}−\mathrm{1}}−\sqrt{\mathrm{2}{y}−\mathrm{1}}=\mathrm{1} \\ $$ Answered by behi83417@gmail.com last updated on 14/Apr/20 $$\begin{cases}{\left(\mathrm{x}−\mathrm{2y}\right)^{\mathrm{2}} =\mathrm{xy}\Rightarrow\mathrm{x}^{\mathrm{2}}…

Question-154458

Question Number 154458 by mathdanisur last updated on 18/Sep/21 Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21 $$\int\frac{{x}^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} {x}}{dx}=−{x}^{\mathrm{2}} \mathrm{cot}{x}+\mathrm{2}\int{x}\mathrm{cot}{xdx} \\ $$$$=−{x}^{\mathrm{2}} \mathrm{cot}{x}+\mathrm{2}{x}\mathrm{ln}\left(\mathrm{sin}{x}\right)−\mathrm{2}\int\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$$\int_{\mathrm{0}}…