Question Number 22726 by math solver last updated on 22/Oct/17 Commented by math solver last updated on 24/Oct/17 $$\:{solve}\:{q}.\mathrm{8}? \\ $$ Commented by math solver…
Question Number 88252 by A8;15: last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 88251 by A8;15: last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153780 by liberty last updated on 10/Sep/21 $$\:\lfloor\:\frac{\mathrm{125}}{\mathrm{12}}\:\rfloor\:=\mathrm{10}\:{or}\:\mathrm{11}\:? \\ $$ Answered by puissant last updated on 10/Sep/21 $$\lfloor\frac{\mathrm{125}}{\mathrm{12}}\rfloor=\lfloor\mathrm{10},\mathrm{41}\rfloor=\mathrm{10}.. \\ $$ Commented by liberty…
Question Number 88239 by A8;15: last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22701 by selestian last updated on 22/Oct/17 Answered by ajfour last updated on 22/Oct/17 $${e}^{\left(\frac{\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {x}}\right)\mathrm{ln}\:\mathrm{2}} \:={e}^{\mathrm{ln}\:\mathrm{2}^{\mathrm{tan}\:^{\mathrm{2}} {x}} } \:=\mathrm{2}^{\mathrm{tan}\:^{\mathrm{2}} {x}} \\…
Question Number 88232 by A8;15: last updated on 09/Apr/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153764 by mathdanisur last updated on 10/Sep/21 $$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}\:-\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\mathrm{dxdy}\:>\:\frac{\pi}{\mathrm{4}} \\ $$ Commented by alisiao last updated on…
Question Number 153763 by mathdanisur last updated on 10/Sep/21 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x};\mathrm{y}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mid\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{y}^{\mathrm{2}} \mid\:-\:\sqrt{\mathrm{16y}\:+\:\mathrm{1}}\:=\:\mathrm{0} \\ $$ Answered by liberty last updated on 10/Sep/21…
Question Number 153733 by mathdanisur last updated on 09/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com