Menu Close

Category: Algebra

The-number-of-integral-solutions-of-the-equation-4log-x-2-x-2log-4x-x-2-3log-2x-x-3-is-

Question Number 22220 by Tinkutara last updated on 13/Oct/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integral}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{4log}_{{x}/\mathrm{2}} \left(\sqrt{{x}}\right)+\mathrm{2log}_{\mathrm{4}{x}} \left({x}^{\mathrm{2}} \right)= \\ $$$$\mathrm{3log}_{\mathrm{2}{x}} \left({x}^{\mathrm{3}} \right)\:\mathrm{is} \\ $$ Answered by ajfour last…

f-x-3-x-1-f-x-3-1-x-x-find-f-x-

Question Number 87755 by john santu last updated on 06/Apr/20 $$\mathrm{f}\left(\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{x}+\mathrm{3}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$ Commented by john santu last updated on 06/Apr/20 $$\left(\mathrm{i}\right)\:\mathrm{let}\:\frac{\mathrm{x}−\mathrm{3}}{\mathrm{x}+\mathrm{1}}\:=\:\mathrm{x}'\:\Rightarrow\mathrm{f}\left(\mathrm{x}'\right)\:+\:\mathrm{f}\left(\frac{\mathrm{x}'−\mathrm{3}}{\mathrm{x}'+\mathrm{1}}\right)\:=\:\frac{\mathrm{x}'+\mathrm{3}}{\mathrm{1}−\mathrm{x}} \\…

solve-sin-pi-x-4-1-2-

Question Number 87737 by M±th+et£s last updated on 05/Apr/20 $${solve} \\ $$$${sin}\left(\frac{\pi}{\left[\frac{\left[{x}\right]}{\mathrm{4}}\right]}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Answered by mahdi last updated on 06/Apr/20 $$\mathrm{u}=\left[\frac{\left[\mathrm{x}\right]}{\mathrm{4}}\right]\Rightarrow−\mathrm{1}\leqslant\frac{\mathrm{1}}{\mathrm{u}}\leqslant\mathrm{1}\Rightarrow−\pi\leqslant\frac{\pi}{\mathrm{u}}\leqslant\pi\:\:\:\left\{\mathrm{u}\neq\mathrm{0}\Rightarrow\mathrm{x}\notin\left[\mathrm{0},\mathrm{4}\right)\right\} \\ $$$$\mathrm{sin}\left(\frac{\pi}{\mathrm{u}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\begin{cases}{\frac{\pi}{\mathrm{u}}=\frac{\pi}{\mathrm{6}}+\mathrm{2k}\pi}\\{\frac{\pi}{\mathrm{u}}=\frac{\mathrm{5}\pi}{\mathrm{6}}+\mathrm{2k}\pi}\end{cases} \\…

Question-87733

Question Number 87733 by TawaTawa1 last updated on 05/Apr/20 Commented by mahdi last updated on 05/Apr/20 $$\mathrm{27y}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{3}} }=\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{9y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} }−\mathrm{3}\right)= \\ $$$$\left(\mathrm{3y}+\frac{\mathrm{1}}{\mathrm{y}}\right)\left(\mathrm{3}−\mathrm{3}\right)=\mathrm{0} \\ $$…

solve-the-equation-sin-1-cos-x-1-

Question Number 87724 by mr W last updated on 05/Apr/20 $${solve}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{cos}}\:\lfloor\boldsymbol{{x}}\rfloor\right)=\mathrm{1} \\ $$ Answered by mahdi last updated on 05/Apr/20 $$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{cos}\left[\mathrm{x}\right]\right)=\mathrm{1}\Rightarrow\mathrm{cos}\left[\mathrm{x}\right]=\mathrm{sin}\left(\mathrm{1}+\mathrm{2k}\pi\right)…

Question-153256

Question Number 153256 by Lekhraj last updated on 06/Sep/21 Commented by MJS_new last updated on 06/Sep/21 $${x}<{y} \\ $$$${x}=\frac{\mathrm{25}}{\mathrm{9}{t}}\wedge{y}=\frac{\mathrm{25}{t}}{\mathrm{9}} \\ $$$${t}=\sqrt{\frac{\mathrm{5}}{\mathrm{3}}}\:\Rightarrow\:\frac{{x}}{{y}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$$\left(\mathrm{for}\:{y}<{x}\:\mathrm{we}\:\mathrm{get}\:\frac{{x}}{{y}}=\frac{\mathrm{5}}{\mathrm{3}}\right) \\ $$…

C-0-2-C-1-3-C-2-4-C-3-5-

Question Number 22177 by Tinkutara last updated on 12/Oct/17 $$\frac{{C}_{\mathrm{0}} }{\mathrm{2}}\:−\:\frac{{C}_{\mathrm{1}} }{\mathrm{3}}\:+\:\frac{{C}_{\mathrm{2}} }{\mathrm{4}}\:−\:\frac{{C}_{\mathrm{3}} }{\mathrm{5}}\:+\:………. \\ $$ Answered by ajfour last updated on 12/Oct/17 $${x}\left(\mathrm{1}−{x}\right)^{{n}} ={C}_{\mathrm{0}}…