Menu Close

Category: Algebra

Question-204632

Question Number 204632 by mr W last updated on 23/Feb/24 Answered by witcher3 last updated on 23/Feb/24 $$\left.\mathrm{x}>\mathrm{1};\mathrm{x}=\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)};\mathrm{t}\in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right. \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}+\frac{\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{t}\right)}−\mathrm{1}}}=\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{t}\right)}+\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{t}\right)}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{cauchy}\:\mathrm{shwartz}\:\left(\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{sin}\left(\mathrm{t}\right)}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{cos}\left(\mathrm{t}\right)}}\right)^{\mathrm{2}} \right)\left(\left(\sqrt{\mathrm{sin}\left(\mathrm{t}\right)}\right)^{\mathrm{2}}…

a-b-c-R-If-a-b-c-1-Prove-that-a-b-c-1-3-

Question Number 204621 by hardmath last updated on 23/Feb/24 $$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:\in\:\mathbb{R}^{+} \\ $$$$\mathrm{If}\:\:\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\:+\:\sqrt{\mathrm{c}}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\geqslant\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$ Answered by A5T last updated on 23/Feb/24 $$\frac{{a}+{b}+{c}}{\mathrm{3}}\geqslant\left(\frac{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{9}}\Rightarrow{a}+{b}+{c}\geqslant\frac{\mathrm{1}}{\mathrm{3}}…

If-f-x-2-2x-log-3-x-3-x-5-f-1-x-4-x-lt-5-f-0-

Question Number 204610 by mnjuly1970 last updated on 23/Feb/24 $$ \\ $$$$\:\:\:{If}\:,\:\:\:{f}\left({x}\right)\:=\:\begin{cases}{\:\mathrm{2}^{\mathrm{2}{x}} −\:{log}_{\mathrm{3}} \:\left(\:{x}+\mathrm{3}\:\right)\:\:\:\:;\:\:\:{x}\:\geqslant\mathrm{5}}\\{\:{f}\:\left(\mathrm{1}+\:{x}\:\right)\:\:−\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:;\:\:{x}\:<\:\mathrm{5}}\end{cases}\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\Rightarrow\:\:{f}\:\left(\mathrm{0}\:\right)=\:? \\ $$$$ \\ $$ Answered by Rasheed.Sindhi…

Question-204590

Question Number 204590 by sphelele last updated on 22/Feb/24 Answered by A5T last updated on 22/Feb/24 $$\left.{a}\right)=\frac{\mathrm{2}^{{n}+\mathrm{2}+\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}^{\mathrm{3}{n}−\mathrm{3}} }=\frac{\mathrm{2}^{\mathrm{3}{n}+\mathrm{4}} }{\mathrm{2}^{\mathrm{3}{n}+\mathrm{4}} \mathrm{2}^{−\mathrm{7}} }=\mathrm{128} \\ $$$$\left.{b}\right)=\left(\frac{{b}−{a}}{{ab}}\overset{−\mathrm{1}} {\right)}=\frac{{ab}}{{b}−{a}}…

For-z-a-bi-If-z-z-z-z-4bi-Find-z-

Question Number 204583 by hardmath last updated on 22/Feb/24 $$\mathrm{For}\:\:\:\mathrm{z}\:=\:\mathrm{a}\:−\:\mathrm{bi} \\ $$$$\mathrm{If}\:\:\:\left(\mid\mathrm{z}\mid\:−\:\mathrm{z}\right)\centerdot\left(\mid\mathrm{z}\mid\:+\:\overline {\mathrm{z}}\right)\:=\:\mathrm{4bi} \\ $$$$\mathrm{Find}\:\:\:\mid\mathrm{z}\mid\:=\:? \\ $$ Answered by A5T last updated on 22/Feb/24 $$\left(\mid{z}\mid−{z}\right)\left(\mid{z}\mid+\overset{−}…

If-a-1-2-2-1-3-2-1-100-2-b-0-99-Prove-that-a-lt-b-

Question Number 204545 by hardmath last updated on 21/Feb/24 $$\mathrm{If} \\ $$$$\mathrm{a}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:\:+\:\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:\:+\:\:…\:\:+\:\:\frac{\mathrm{1}}{\mathrm{100}^{\mathrm{2}} } \\ $$$$\mathrm{b}\:=\:\mathrm{0},\mathrm{99} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{a}\:<\:\mathrm{b} \\ $$ Answered by…

solve-for-x-y-y-z-z-x-exact-solutions-required-3-4i-x-y-3-4i-y-z-3-4i-z-x-

Question Number 204510 by Ghisom last updated on 20/Feb/24 $$\mathrm{solve}\:\mathrm{for}\:{x}\neq{y}\wedge{y}\neq{z}\wedge{z}\neq{x} \\ $$$$\left(\mathrm{exact}\:\mathrm{solutions}\:\mathrm{required}\right) \\ $$$$\sqrt{\left(−\mathrm{3}+\mathrm{4i}\right){x}}={y} \\ $$$$\sqrt{\left(−\mathrm{3}+\mathrm{4i}\right){y}}={z} \\ $$$$\sqrt{\left(−\mathrm{3}+\mathrm{4i}\right){z}}={x} \\ $$ Answered by Frix last updated…