Question Number 152791 by mathdanisur last updated on 01/Sep/21 Answered by MJS_new last updated on 02/Sep/21 $$\left({xy}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{16}\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{18}{xy}+\mathrm{16}{x}+\mathrm{16}{y}−\mathrm{15}\geqslant\mathrm{0} \\ $$$${x}=\mathrm{3}+{p}\wedge{y}=\mathrm{3}+{q}\wedge{p}\geqslant\mathrm{0}\wedge{q}\geqslant\mathrm{0} \\…
Question Number 87253 by peter frank last updated on 03/Apr/20 $${Three}\:{pair}\:{of}\:{socks}\:{are} \\ $$$${placed}\:{in}\:{a}\:{box}.{If}\:{two} \\ $$$${socks}\:{are}\:{drawn}\:{at} \\ $$$${random}\:{from}\:{the}\:{box} \\ $$$${What}\:{is}\:{the}\:{probability} \\ $$$$\left({a}\right){of}\:{drawing}\:\:{a}\:{match} \\ $$$${pair} \\ $$$$\left({b}\right){of}\:{drawing}\:{a}\:{socks}…
Question Number 152790 by mathdanisur last updated on 01/Sep/21 Commented by MJS_new last updated on 01/Sep/21 $$\mathrm{you}\:\mathrm{can}\:\mathrm{do}\:\mathrm{it}\:\mathrm{yourself}. \\ $$$$\mathrm{simply}\:\mathrm{let}\:{x}=\frac{{t}}{{a}}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{it}! \\ $$ Terms of Service Privacy…
Question Number 152779 by Lekhraj last updated on 01/Sep/21 Commented by mr W last updated on 01/Sep/21 $${what}\:{is}\:{the}\:{question}? \\ $$ Commented by Lekhraj last updated…
Question Number 152764 by mnjuly1970 last updated on 01/Sep/21 Commented by prakash jain last updated on 01/Sep/21 $$\left.\mathrm{1}\right)\:{x}={n}+{f} \\ $$$${n}\geqslant\mathrm{0} \\ $$$${n}=\left({n}+{f}\right)\left({n}+{f}\right)=\left({n}+{f}\right)^{\mathrm{2}} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}+{n}\left({n}−\mathrm{1}\right)=\mathrm{0}…
Question Number 152757 by EDWIN88 last updated on 01/Sep/21 $${Find}\:{all}\:{complex}\:{number}\:{z}\:{such} \\ $$$${that}\:\left(\mathrm{3}{z}+\mathrm{1}\right)\left(\mathrm{4}{z}+\mathrm{1}\right)\left(\mathrm{6}{z}+\mathrm{1}\right)\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{2} \\ $$ Answered by john_santu last updated on 01/Sep/21 $${note}\:{that}\:\mathrm{8}\left(\mathrm{3}{z}+\mathrm{1}\right)\mathrm{6}\left(\mathrm{4}{z}+\mathrm{1}\right)\mathrm{4}\left(\mathrm{6}{z}+\mathrm{1}\right)\mathrm{2}\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{768} \\ $$$$\left(\mathrm{24}{z}+\mathrm{8}\right)\left(\mathrm{24}{z}+\mathrm{6}\right)\left(\mathrm{24}{z}+\mathrm{4}\right)\left(\mathrm{24}{z}+\mathrm{2}\right)=\mathrm{768} \\…
Question Number 87224 by jagoll last updated on 03/Apr/20 $$\mathrm{how}\:\mathrm{to}\:\mathrm{simply}\:\mathrm{the}\: \\ $$$$\mathrm{boolean}\:\mathrm{algebra}\:\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}'\:+\mathrm{Y}+\mathrm{Z}\right) \\ $$$$\left(\mathrm{X}+\mathrm{Y}'+\mathrm{Z}\right)\: \\ $$ Commented by jagoll last updated on 03/Apr/20 $$\mathrm{how}\:\mathrm{sir}? \\…
Question Number 152753 by mathdanisur last updated on 01/Sep/21 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triplets}\:\left(\mathrm{a};\mathrm{b};\mathrm{c}\right)\:\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{which}\:\mathrm{satisfy}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented by Rasheed.Sindhi last updated on 01/Sep/21 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triplets}\:\left(\mathrm{a};\mathrm{b};\mathrm{c}\right)\:\mathrm{of}\:\mathrm{positive} \\…
Question Number 152752 by EDWIN88 last updated on 01/Sep/21 $$\:{Given}\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}+\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{2}}}\:=\mathrm{2} \\ $$$${then}\:\sqrt{\mathrm{198}{x}^{\mathrm{4}} −\mathrm{868}{x}^{\mathrm{3}} −\mathrm{229}{x}^{\mathrm{2}} +\mathrm{200}{x}}\:=? \\ $$ Commented by liberty last updated on 01/Sep/21 x = 4.5897576…
Question Number 21653 by Joel577 last updated on 30/Sep/17 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{solutions}\:\left({x},{y}\right)\:\mathrm{that}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{7}{x}^{\mathrm{2}} \:−\:\mathrm{13}{xy}\:+\:\mathrm{7}{y}^{\mathrm{2}} }\:=\:\mid{x}\:−\:{y}\mid\:+\:\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com