Menu Close

Category: Algebra

if-x-y-z-are-natural-numbers-such-that-2x-x-y-y-3z-z-then-find-2021x-2022y-2023z-x-y-z-

Question Number 151988 by mathdanisur last updated on 24/Aug/21 $$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\:\:\mathrm{are}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\mathrm{2x}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{y}^{\boldsymbol{\mathrm{y}}} \:=\:\mathrm{3z}^{\boldsymbol{\mathrm{z}}} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\frac{\mathrm{2021}\boldsymbol{\mathrm{x}}\:+\:\mathrm{2022}\boldsymbol{\mathrm{y}}\:+\:\mathrm{2023}\boldsymbol{\mathrm{z}}}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}\:=\:? \\ $$ Commented by mathdanisur last updated on 25/Aug/21…

The-quadratic-equation-p-x-0-with-real-coefficients-has-purely-imaginary-roots-Then-the-equation-p-p-x-0-has-1-Only-purely-imaginary-roots-2-All-real-roots-3-Two-real-and-two-purely-imag

Question Number 20914 by Tinkutara last updated on 07/Sep/17 $$\mathrm{The}\:\mathrm{quadratic}\:\mathrm{equation}\:{p}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{with} \\ $$$$\mathrm{real}\:\mathrm{coefficients}\:\mathrm{has}\:\mathrm{purely}\:\mathrm{imaginary} \\ $$$$\mathrm{roots}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation}\:{p}\left({p}\left({x}\right)\right)\:=\:\mathrm{0} \\ $$$$\mathrm{has} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Only}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{roots} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{All}\:\mathrm{real}\:\mathrm{roots} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Two}\:\mathrm{real}\:\mathrm{and}\:\mathrm{two}\:\mathrm{purely}\:\mathrm{imaginary} \\ $$$$\mathrm{roots} \\…

lim-x-0-1-mx-n-1-nx-m-x-2-m-n-N-

Question Number 151979 by mathdanisur last updated on 24/Aug/21 $$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{mx}\right)^{\boldsymbol{\mathrm{n}}} \:-\:\left(\mathrm{1}+\mathrm{nx}\right)^{\boldsymbol{\mathrm{m}}} }{\mathrm{x}^{\mathrm{2}} }\:=\:?\:\:;\:\:\mathrm{m};\mathrm{n}\in\mathbb{N} \\ $$ Answered by mr W last updated on 24/Aug/21 $$\left(\mathrm{1}+{mx}\right)^{{n}}…

lim-n-k-1-n-arctan-1-2k-2-arctan-2k-2-1-2k-2-

Question Number 151956 by mathdanisur last updated on 24/Aug/21 $$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{arctan}\:\frac{\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\:\mathrm{arctan}\:\frac{\mathrm{2k}^{\mathrm{2}} \:-\:\mathrm{1}}{\mathrm{2k}^{\mathrm{2}} }\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-20881

Question Number 20881 by tawa tawa last updated on 05/Sep/17 Answered by mrW1 last updated on 06/Sep/17 $$\left(\mathrm{ax}+\mathrm{ay}\right)^{\mathrm{n}} =\mathrm{a}^{\mathrm{n}} \left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{n}} \\ $$$$\mathrm{since}\:\mathrm{a}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{exists},\:\mathrm{n}\:\mathrm{is}\:\mathrm{even}. \\ $$$$\mathrm{its}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{is} \\…

The-number-of-irrational-roots-of-the-equation-x-1-x-2-3x-2-3x-1-21-is-

Question Number 20867 by Tinkutara last updated on 05/Sep/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{irrational}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation} \\ $$$$\left({x}\:−\:\mathrm{1}\right)\left({x}\:−\:\mathrm{2}\right)\left(\mathrm{3}{x}\:−\:\mathrm{2}\right)\left(\mathrm{3}{x}\:+\:\mathrm{1}\right)\:=\:\mathrm{21}\:\mathrm{is} \\ $$ Answered by alex041103 last updated on 09/Sep/17 $$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left(\mathrm{3}{x}−\mathrm{2}\right)\left(\mathrm{3}{x}+\mathrm{1}\right)= \\…