Menu Close

Category: Algebra

Prove-that-i-n-0-n-2-n-2e-ii-n-0-n-3-n-5e-iii-n-0-n-4-n-15e-

Question Number 24540 by Tinkutara last updated on 20/Nov/17 $${Prove}\:{that} \\ $$$$\left({i}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!}=\mathrm{2}{e}. \\ $$$$\left({ii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!}=\mathrm{5}{e}. \\ $$$$\left({iii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{4}} }{{n}!}=\mathrm{15}{e}.…

Question-155594

Question Number 155594 by mathdanisur last updated on 02/Oct/21 Answered by ghimisi last updated on 02/Oct/21 $$\Leftrightarrow\Sigma\left(\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\right)\geqslant\mathrm{0} \\ $$$$\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}}…

Evaluate-the-limit-and-prove-by-the-definition-that-as-n-for-z-1-2-z-1-n-1-n-z-2-

Question Number 155585 by mathdanisur last updated on 02/Oct/21 $$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{by}\:\mathrm{the} \\ $$$$\varepsilon−\delta\:\mathrm{definition}\:\mathrm{that}\:\mathrm{as}\:\mathrm{n}\rightarrow\infty\:\mathrm{for}\:\mathrm{z}\geqslant\mathrm{1} \\ $$$$\left(\mathrm{2}\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{z}}\:−\:\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \:\rightarrow\:\mathrm{z}^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Solve-in-R-5x-5x-2-4-7-x-x-2-x-2-3x-18-2-x-

Question Number 155545 by mathdanisur last updated on 02/Oct/21 $$\mathrm{Solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{5x}}{\:\sqrt{\mathrm{5x}^{\mathrm{2}} \:+\:\mathrm{4}}\:+\:\mathrm{7}\sqrt{\mathrm{x}}}\:+\:\frac{\mathrm{x}\:+\:\mathrm{2}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{3x}\:-\:\mathrm{18}}\:+\:\mathrm{2}\sqrt{\mathrm{x}}} \\ $$ Commented by Rasheed.Sindhi last updated on 02/Oct/21 $$=\mathrm{0}? \\…

let-a-b-c-gt-0-and-a-b-c-3-find-min-value-of-the-expression-S-abc-a-1-2-b-1-2-c-1-2-

Question Number 155547 by mathdanisur last updated on 02/Oct/21 $$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{S}\:=\:\mathrm{abc}\:+\:\left(\mathrm{a}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{b}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{c}-\mathrm{1}\right)^{\mathrm{2}} \\ $$ Answered by ghimisi last updated on 02/Oct/21…