Menu Close

Category: Algebra

lim-x-0-x-x-

Question Number 150599 by mathdanisur last updated on 13/Aug/21 $$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:=\:? \\ $$ Commented by n0y0n last updated on 13/Aug/21 $$\mathrm{limit}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist} \\ $$$$ \\…

Prove-that-three-points-z-1-z-2-z-3-are-collinear-if-determinant-z-1-z-1-1-z-2-z-2-1-z-3-z-3-1-0-

Question Number 19507 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\…

Prove-that-the-length-of-perpendicular-drawn-from-the-point-z-0-to-the-straight-line-z-z-c-0-is-p-z-0-z-0-c-2-

Question Number 19508 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$…

Prove-that-two-straight-lines-with-complex-slopes-1-and-2-are-parallel-and-perpendicular-according-as-1-2-and-1-2-0-Hence-if-the-straight-lines-z-z-c-0-and-z

Question Number 19505 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar…

Prove-that-the-equation-of-the-line-joining-the-points-z-1-and-z-2-can-be-put-in-the-form-z-tz-1-1-t-z-2-where-t-is-a-parameter-

Question Number 19506 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$ Answered by ajfour…

Find-the-last-digit-of-2-253-

Question Number 19499 by tawa tawa last updated on 12/Aug/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{253}} \\ $$ Answered by Tinkutara last updated on 12/Aug/17 $$\mathrm{Cyclicity}\:\mathrm{of}\:\mathrm{2}\:=\:\mathrm{4}\:\left(\mathrm{2},\:\mathrm{4},\:\mathrm{8},\:\mathrm{6}\right) \\ $$$$\mathrm{253}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{4}\right) \\ $$$$\therefore\:\mathrm{2}^{\mathrm{253}}…

Find-A-and-prove-that-2021-A-if-abcd-A-a-d-1-c-b-c-a-b-b-c-

Question Number 150571 by mathdanisur last updated on 13/Aug/21 $$\mathrm{Find}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{2021}\in\boldsymbol{\mathrm{A}}\:\mathrm{if} \\ $$$$\overline {\mathrm{abcd}}\in\boldsymbol{\mathrm{A}},\:\:\frac{\mathrm{a}}{\mathrm{d}\:+\:\mathrm{1}}\:=\:\frac{\mathrm{c}\:-\:\mathrm{b}}{\mathrm{c}}\:=\:\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{b}\:+\:\mathrm{c}} \\ $$ Answered by Rasheed.Sindhi last updated on 15/Aug/21 $$\overline {\mathrm{abcd}}\in\boldsymbol{\mathrm{A}};\:\:\frac{\mathrm{a}}{\mathrm{d}\:+\:\mathrm{1}}\:=\:\frac{\mathrm{c}\:-\:\mathrm{b}}{\mathrm{c}}\:=\:\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{b}\:+\:\mathrm{c}};\mathrm{A}=? \\…