Question Number 149636 by SLVR last updated on 06/Aug/21 Answered by mr W last updated on 06/Aug/21 $${Q}\mathrm{1} \\ $$$${x}\:{is}\:{integer},\:{then}\:{x}^{\mathrm{2}} \:{also}\:{integer}. \\ $$$$\left[{x}^{\mathrm{2}} \right]={x}^{\mathrm{2}} ={x}+\mathrm{1}\:{which}\:{has}\:{no}\:{solution}.…
Question Number 149638 by Samimsultani last updated on 06/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 149621 by mathdanisur last updated on 06/Aug/21 $$\mathrm{if}\:\:\:\mathrm{2}^{\boldsymbol{{x}}} =\mathrm{3}^{\boldsymbol{{y}}} =\mathrm{7}^{\boldsymbol{{z}}} =\sqrt[{\mathrm{3}}]{\mathrm{42}} \\ $$$$\mathrm{find}\:\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=? \\ $$ Answered by iloveisrael last updated on 06/Aug/21 $$\:\mathrm{If}\:\mathrm{2}^{\mathrm{x}}…
Question Number 149599 by muvvakarthik last updated on 06/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 149585 by mathdanisur last updated on 06/Aug/21 $${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{and}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{3}\:\:{then}: \\ $$$$\Sigma\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\left(\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} \right)}\:\geqslant\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$ Answered by…
Question Number 149588 by mathdanisur last updated on 06/Aug/21 $$\begin{cases}{{x}\:+\:\frac{\mathrm{1}}{{y}}\:=\:\mathrm{2}}\\{{y}\:+\:\frac{\mathrm{1}}{{z}}\:=\:\mathrm{2}}\\{{z}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}}\end{cases}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$ Commented by Ar Brandon last updated on 06/Aug/21 $$\mathrm{1};\mathrm{1};\mathrm{1} \\ $$ Commented by…
Question Number 84047 by jagoll last updated on 09/Mar/20 $$\mathrm{how}\:\mathrm{many}\: \\ $$$$\mathrm{natural}\:\mathrm{solution}\:\mathrm{are}\:\mathrm{there}\:\mathrm{for}\: \\ $$$${x}^{\mathrm{2}} \:−\:{y}\:!\:=\:\mathrm{2019}\:. \\ $$ Answered by naka3546 last updated on 09/Mar/20 $$\mathrm{1},\:{sir}\:\:{namely}\:\:\left({x},\:{y}\right)\:=\:\left(\mathrm{45},\:\mathrm{3}\right)…
Question Number 149569 by mathdanisur last updated on 06/Aug/21 $$\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5x}\:+\:\mathrm{6}}{\mathrm{2x}\:-\:\mathrm{9}}\right)^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } =\:? \\ $$ Answered by Ar Brandon last updated on 06/Aug/21 $$\mathscr{L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5}{x}+\mathrm{6}}{\mathrm{2}{x}−\mathrm{9}}\right)^{{x}^{\mathrm{2}}…
Question Number 149568 by mathdanisur last updated on 06/Aug/21 $${solve}\:{the}\:{equation}: \\ $$$$\mathrm{20}{z}\left[{z}\right]\:-\:\mathrm{21}\left\{{z}\right\}\:=\:\mathrm{2021} \\ $$$${where}\:\left\{\ast\right\}\:{is}\:{GIF}\:\:{and}\:\:\left\{{z}\right\}\:=\:{z}\:-\:\left[{z}\right] \\ $$ Answered by Olaf_Thorendsen last updated on 06/Aug/21 $$\mathrm{20}{z}\left[{z}\right]−\mathrm{21}\left\{{z}\right\}\:=\:\mathrm{2021}\:\:\:\:\left(\mathrm{1}\right) \\…
Question Number 149567 by mathdanisur last updated on 06/Aug/21 $${if}\:\:\boldsymbol{{q}}\:\:{is}\:{prime}\:{number}\:{fixed},\:{then} \\ $$$${solve}\:{for}\:{natural}\:{numbers}\:{the}\:{equation}: \\ $$$$\frac{\mathrm{1}}{{q}}\:=\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{y}}\:-\:\frac{\mathrm{1}}{{z}} \\ $$ Commented by Rasheed.Sindhi last updated on 07/Aug/21 $$\mathrm{My}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{too}\:\mathrm{lengthy}. \\…