Menu Close

Category: Algebra

Question-149192

Question Number 149192 by Samimsultani last updated on 03/Aug/21 Answered by prakash jain last updated on 03/Aug/21 $$\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{{x}} ={u} \\ $$$$\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)^{{x}} =\frac{\mathrm{1}}{{u}} \\ $$$${u}−\frac{\mathrm{1}}{{u}}=\mathrm{40}\sqrt{\mathrm{6}} \\…

Question-149180

Question Number 149180 by mathdanisur last updated on 03/Aug/21 Answered by Kamel last updated on 03/Aug/21 $${L}=\underset{{n}\rightarrow+\infty} {{lim}e}^{{nLn}\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} +{k}}}\right)} =\underset{{n}\rightarrow+\infty} {{lim}e}^{{nLn}\left(\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}}…

2-2x-4-3x-128-x-

Question Number 149171 by liberty last updated on 03/Aug/21 $$\:\mathrm{2}^{\mathrm{2x}\:} \:+\:\mathrm{4}^{\mathrm{3x}} \:=\:\mathrm{128}\:\Rightarrow\mathrm{x}=? \\ $$ Answered by Ar Brandon last updated on 03/Aug/21 $$\mathrm{2}^{\mathrm{2}{x}} +\mathrm{4}^{\mathrm{3}{x}} =\mathrm{128}\:\:\Rightarrow\:\:\mathrm{4}^{{x}}…

find-the-coefficient-of-x-50-in-the-1-x-1000-2x-1-x-999-3x-2-1-x-998-

Question Number 149155 by gsk2684 last updated on 03/Aug/21 $${find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{50}} \:{in}\:{the}\: \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1000}} +\mathrm{2}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{999}} +\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{998}} +…\infty\: \\ $$ Terms of Service Privacy Policy Contact:…

lim-n-1-n-1-1-2-1-3-1-n-

Question Number 149151 by mathdanisur last updated on 03/Aug/21 $$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:…\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\:=\:? \\ $$ Answered by Kamel last updated on 03/Aug/21 $${L}=\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:…\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\: \\ $$$$\:\:\:=\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\underset{{k}=\mathrm{1}}…