Menu Close

Category: Algebra

Let-k-be-a-real-number-such-that-the-inequality-x-3-6-x-k-has-a-solution-then-the-maximum-value-of-k-is-

Question Number 21313 by Tinkutara last updated on 20/Sep/17 $$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\sqrt{{x}\:−\:\mathrm{3}}\:+\:\sqrt{\mathrm{6}\:−\:{x}}\:\geqslant\:{k}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{solution}\:\mathrm{then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:{k} \\ $$$$\mathrm{is} \\ $$ Commented by mrW1 last updated on 20/Sep/17…

Let-a-and-b-be-positive-real-numbers-with-a-3-b-3-a-b-and-k-a-2-4b-2-then-1-k-lt-1-2-k-gt-1-3-k-1-4-k-gt-2-

Question Number 21311 by Tinkutara last updated on 20/Sep/17 $$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{with}\:{a}^{\mathrm{3}} \:+\:{b}^{\mathrm{3}} \:=\:{a}\:−\:{b},\:\mathrm{and}\:{k}\:=\:{a}^{\mathrm{2}} \:+\:\mathrm{4}{b}^{\mathrm{2}} , \\ $$$$\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{k}\:<\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:{k}\:>\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:{k}\:=\:\mathrm{1} \\…

Suppose-p-is-a-polynomial-with-complex-coefficients-and-an-even-degree-If-all-the-roots-of-p-are-complex-non-real-numbers-with-modulus-1-prove-that-p-1-R-iff-p-1-R-

Question Number 21309 by Tinkutara last updated on 20/Sep/17 $$\mathrm{Suppose}\:{p}\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{with}\:\mathrm{complex} \\ $$$$\mathrm{coefficients}\:\mathrm{and}\:\mathrm{an}\:\mathrm{even}\:\mathrm{degree}.\:\mathrm{If}\:\mathrm{all} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{p}\:\mathrm{are}\:\mathrm{complex}\:\mathrm{non}-\mathrm{real} \\ $$$$\mathrm{numbers}\:\mathrm{with}\:\mathrm{modulus}\:\mathrm{1},\:\mathrm{prove}\:\mathrm{that} \\ $$$${p}\left(\mathrm{1}\right)\:\in\:{R}\:\mathrm{iff}\:{p}\left(−\mathrm{1}\right)\:\in\:{R}. \\ $$ Terms of Service Privacy Policy…

Let-z-1-z-2-z-3-be-complex-numbers-such-that-i-z-1-z-2-z-3-1-ii-z-1-z-2-z-3-0-iii-z-1-2-z-2-2-z-3-2-0-Prove-that-for-all-n-2-z-1-n-z-2-n-z-3-

Question Number 21307 by Tinkutara last updated on 20/Sep/17 $$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such} \\ $$$$\mathrm{that} \\ $$$$\left(\mathrm{i}\right)\:\mid{z}_{\mathrm{1}} \mid\:=\:\mid{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{3}} \mid\:=\:\mathrm{1} \\ $$$$\left(\mathrm{ii}\right)\:{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} \:\neq\:\mathrm{0}…

Question-152365

Question Number 152365 by mathdanisur last updated on 27/Aug/21 Answered by ghimisi last updated on 28/Aug/21 $${a}={x}+{y};{b}={y}+{z};{c}={x}+{z} \\ $$$${p}={x}+{y}+{z};{q}={ab}+{bc}+{ac};{r}={abc} \\ $$$$\Leftrightarrow….\Leftrightarrow{p}^{\mathrm{3}} +\mathrm{9}{r}\geqslant\mathrm{4}{pq}\Leftrightarrow{schur} \\ $$ Commented…

Let-z-1-z-2-z-3-be-complex-numbers-not-all-real-such-that-z-1-z-2-z-3-1-and-2-z-1-z-2-z-3-3z-1-z-2-z-3-R-Prove-that-max-arg-z-1-arg-z-2-arg-z-3-pi-6-Wher

Question Number 21294 by Tinkutara last updated on 19/Sep/17 $$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers},\:\mathrm{not} \\ $$$$\mathrm{all}\:\mathrm{real},\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \mid\:=\:\mid{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{3}} \mid\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{2}\left({z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} \right)\:−\:\mathrm{3}{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}}…

Question-152364

Question Number 152364 by mathdanisur last updated on 27/Aug/21 Answered by Kamel last updated on 28/Aug/21 $$ \\ $$$$\Omega\left({a},{b}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{Ln}\left({tan}\left({ax}\right)\right)}{\mathrm{1}−\mathrm{2}{bcos}\left({x}\right)+{b}^{\mathrm{2}} }{dx}\:,\:\mid{b}\mid<\mathrm{1},\:\mathrm{0}<{a}\leqslant\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$${We}\:{have}:\:{Ln}\left({tan}\left({ax}\right)\right)=−\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{+\infty}…

Let-n-be-an-even-positive-integer-such-that-n-2-is-odd-and-let-0-1-n-1-be-the-complex-roots-of-unity-of-order-n-Prove-that-k-0-n-1-a-b-k-2-a-n-2-b-n-2-2

Question Number 21293 by Tinkutara last updated on 19/Sep/17 $$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{an}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{such} \\ $$$$\mathrm{that}\:\frac{{n}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{let}\:\alpha_{\mathrm{0}} ,\:\alpha_{\mathrm{1}} ,\:….,\:\alpha_{{n}−\mathrm{1}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{of}\:\mathrm{order}\:{n}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}\:+\:{b}\alpha_{{k}} ^{\mathrm{2}} \right)\:=\:\left({a}^{\frac{{n}}{\mathrm{2}}} \:+\:{b}^{\frac{{n}}{\mathrm{2}}} \right)^{\mathrm{2}}…