Menu Close

Category: Algebra

Question-151791

Question Number 151791 by mathdanisur last updated on 23/Aug/21 Answered by ghimisi last updated on 23/Aug/21 $${x}_{{i}} ^{\mathrm{4}} +\mathrm{1}\geqslant\mathrm{2}{x}_{{i}} ^{\mathrm{2}} \Rightarrow{x}_{{i}} ^{\mathrm{4}} −{x}_{{i}} ^{\mathrm{2}} +\mathrm{1}\geqslant{x}_{{i}}…

Question-151790

Question Number 151790 by mathdanisur last updated on 23/Aug/21 Answered by Olaf_Thorendsen last updated on 24/Aug/21 $${u}_{\mathrm{1}} \:=\:\sqrt{\mathrm{99}} \\ $$$${u}_{{n}} \:=\:\sqrt{\mathrm{102}−\mathrm{3}{n}+{u}_{{n}−\mathrm{1}} } \\ $$$${u}_{\mathrm{33}} \:=\:\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+…+\sqrt{\mathrm{96}+\sqrt{\mathrm{99}}}}}}…

If-a-b-c-0-and-x-1-4-y-3-2-z-2-3-min-x-2-y-2-z-2-

Question Number 151782 by gloriousman last updated on 23/Aug/21 $$ \\ $$$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\geqslant\mathrm{0}\:\mathrm{and}\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{y}−\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{z}+\mathrm{2}}{\mathrm{3}}, \\ $$$$\mathrm{min}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \right)=? \\ $$$$ \\ $$ Answered by liberty last…

0-ln-1-a-2-x-2-b-2-x-2-dx-

Question Number 151768 by mathdanisur last updated on 22/Aug/21 $$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{a}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \right)}{\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 22/Aug/21…

is-1-m-n-1-m-1-n-or-1-1-n-m-or-both-of-them-are-fault-and-why-

Question Number 86230 by M±th+et£s last updated on 27/Mar/20 $${is}\:\:\left(−\mathrm{1}\right)^{\frac{{m}}{{n}}} \:=\left(\sqrt[{{n}}]{\left(−\mathrm{1}\:\right)^{{m}} }\right)\:{or}\:=\left(\sqrt[{{n}}]{−\mathrm{1}}\right)^{{m}} \\ $$$${or}\:{both}\:{of}\:{them}\:{are}\:{fault}\:{and}\:{why}\:? \\ $$ Answered by MJS last updated on 27/Mar/20 $$\left(−\mathrm{1}\right)^{\frac{{m}}{{n}}} =\left(\mathrm{e}^{\mathrm{i}\pi}…

lim-n-k-1-n-n-2-k-

Question Number 151767 by mathdanisur last updated on 22/Aug/21 $$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{k}}\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 22/Aug/21 $$\mathrm{my}\:\mathrm{calculous}\:\mathrm{was}\:\mathrm{false}. \\…

Question-151766

Question Number 151766 by mathdanisur last updated on 22/Aug/21 Commented by tabata last updated on 23/Aug/21 $${ln}\left({y}\right)\:{ln}\left({x}\right)={ln}\left(\mathrm{3}\right)\Rightarrow{ln}\left({y}\right)=\frac{{ln}\left(\mathrm{3}\right)}{{ln}\left({x}\right)} \\ $$$$ \\ $$$$\Rightarrow\frac{{y}^{'} }{{y}}=−\frac{{ln}\left(\mathrm{3}\right)}{{x}\:\left({ln}\left({x}\right)\right)^{\mathrm{2}} } \\ $$$$…

f-3x-1-g-1-5x-2-2-g-o-f-4-

Question Number 151758 by mathdanisur last updated on 22/Aug/21 $$\mathrm{f}\left(\mathrm{3x}+\mathrm{1}\right)=\mathrm{g}^{−\mathrm{1}} \left(\mathrm{5x}^{\mathrm{2}} −\mathrm{2}\right) \\ $$$$\left({g}\:{o}\:{f}\right)^{'} \:\left(\mathrm{4}\right)\:=\:? \\ $$ Commented by otchereabdullai@gmail.com last updated on 23/Aug/21 $$\mathrm{nice}!…

If-the-equation-x-2-2-1-2-x-and-x-2-2-1-2-x-have-one-and-only-one-root-in-common-then-is-equal-to-

Question Number 20684 by Tinkutara last updated on 31/Aug/17 $${If}\:{the}\:{equation}\:{x}^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\beta{x}\:{and} \\ $$$${x}^{\mathrm{2}} \:+\:\alpha^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\alpha{x}\:{have}\:{one}\:{and}\:{only} \\ $$$${one}\:{root}\:{in}\:{common},\:{then}\:\mid\alpha\:−\:\beta\mid\:{is} \\ $$$${equal}\:{to} \\ $$ Answered by $@ty@m…

The-total-number-of-positive-integral-solution-s-of-the-inequation-x-2-3x-4-3-x-2-4-x-5-5-2x-7-6-0-is-are-

Question Number 20671 by Tinkutara last updated on 31/Aug/17 $${The}\:{total}\:{number}\:{of}\:{positive}\:{integral} \\ $$$${solution}\left({s}\right)\:{of}\:{the}\:{inequation} \\ $$$$\frac{{x}^{\mathrm{2}} \left(\mathrm{3}{x}\:−\:\mathrm{4}\right)^{\mathrm{3}} \left({x}\:−\:\mathrm{2}\right)^{\mathrm{4}} }{\left({x}\:−\:\mathrm{5}\right)^{\mathrm{5}} \left(\mathrm{2}{x}\:−\:\mathrm{7}\right)^{\mathrm{6}} }\:\leqslant\:\mathrm{0}\:{is}/{are} \\ $$ Answered by ajfour last…