Menu Close

Category: Algebra

x-

Question Number 206881 by efronzo1 last updated on 29/Apr/24 x Answered by Skabetix last updated on 29/Apr/24 $$\sum_{{n}=\mathrm{0}} ^{\infty} \frac{{x}^{{n}} }{{n}!}={e}^{{x}} \rightarrow{here}\:{x}\:=\:\mathrm{1}\:{so}\:\mathrm{2}\:+\:\frac{\mathrm{1}}{\mathrm{2}!}+…={e} \

Question-206862

Question Number 206862 by hardmath last updated on 28/Apr/24 Commented by SWPlaysMC last updated on 29/Apr/24 EasiestwayIthoughtofprovingthis(Ipartiallysolvedthis)Leta=1,b=1,andc=1(Hint:ifanyoneoftheseis0thenexpressionistheoreticallyundefineddueto÷by0)11+1111+11+11+1111+11+11+1111+113$$\mathrm{so}\:\mathrm{all}\:\sqrt{\frac{\mathrm{1}}{\mathrm{1}}}=\mathrm{1}\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1},\:\mathrm{thus}\:\mathrm{substitute}\:\mathrm{all}\:\mathrm{nums}\:\mathrm{and}\:\mathrm{denoms}\:\mathrm{with}\:\mathrm{1}+\mathrm{1}\:\mathrm{like}\:\mathrm{so}…