Menu Close

Category: Algebra

Show-that-j-3-2-x-2-pix-sin-x-x-cos-x-

Question Number 82073 by TawaTawa last updated on 18/Feb/20 $$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\mathrm{j}_{\mathrm{3}/\mathrm{2}} \left(\mathrm{x}\right)\:\:=\:\:\frac{\sqrt{\mathrm{2}}}{\pi\mathrm{x}}\:\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\:−\:\mathrm{cos}\:\mathrm{x}\right) \\ $$ Commented by jagoll last updated on 18/Feb/20 $${what}\:{is}\:{j}_{\frac{\mathrm{3}}{\mathrm{2}}} ? \\ $$ Commented…

Question-147585

Question Number 147585 by mathdanisur last updated on 22/Jul/21 Answered by Rasheed.Sindhi last updated on 22/Jul/21 $$\:\:\:{z}={w}+{f}\::\:{whole}\:{number}\:\&\:{fraction}<\mathrm{1} \\ $$$$\:\:\:\:{w}+{f}−\mathrm{2021}{f}=\mathrm{2021} \\ $$$$\:\:\:\:{w}=\mathrm{2021}{f}−{f}+\mathrm{2021} \\ $$$$\:\:\:\:{w}=\mathrm{2020}{f}+\mathrm{2021} \\ $$$${Let}\:{f}=\frac{{p}}{{q}}\:;\:{p}\:\&\:{q}\:{coprime}\:{p}<{q}…

n-1-4n-3-n-2-2n-n-3-

Question Number 147572 by liberty last updated on 22/Jul/21 $$\:\:\:\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{4}{n}−\mathrm{3}}{\left({n}^{\mathrm{2}} +\mathrm{2}{n}\right)\left({n}+\mathrm{3}\right)}\:=? \\ $$ Answered by mathmax by abdo last updated on 22/Jul/21 $$\mathrm{let}\:\mathrm{S}=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty}…

x-3-3367-2-n-x-n-

Question Number 147566 by mathdanisur last updated on 21/Jul/21 $${x}^{\mathrm{3}} \:+\:\mathrm{3367}\:=\:\mathrm{2}^{\boldsymbol{{n}}} \:\:\Rightarrow\:{x}\:;\:{n}\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 21/Jul/21 $${x}^{\mathrm{3}} +\mathrm{3367}\:=\:\mathrm{2}^{{n}} \\ $$$$\mathrm{Solution}\:\mathrm{for}\:{x}\in\mathbb{N}.…

Simlify-1-x-1-x-1-x-1-x-2-1-x-1-x-1-x-1-x-2-

Question Number 147557 by mathdanisur last updated on 21/Jul/21 $${Simlify} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \\ $$ Answered by Rasheed.Sindhi last updated on 21/Jul/21 $$\left(\underset{{a}} {\underbrace{\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:}}−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\underset{{b}}…