Menu Close

Category: Algebra

Identifier-les-chiffres-de-l-addition-decimale-que-voici-UN-DOUX-DOUX-DOUX-DOUX-NEUF-

Question Number 80832 by malwaan last updated on 07/Feb/20 $$\boldsymbol{{Identifier}}\:\boldsymbol{{les}}\:\boldsymbol{{chiffres}}\:\boldsymbol{{de}} \\ $$$$\boldsymbol{{l}}'\boldsymbol{{addition}}\:\boldsymbol{{decimale}}\:\boldsymbol{{que}} \\ $$$$\boldsymbol{{voici}}\:: \\ $$$$\boldsymbol{\mathrm{UN}}+\boldsymbol{\mathrm{DOUX}}+\boldsymbol{\mathrm{DOUX}}+\boldsymbol{\mathrm{DOUX}} \\ $$$$+\boldsymbol{\mathrm{DOUX}}=\boldsymbol{\mathrm{NEUF}} \\ $$ Commented by jagoll last updated…

Find-1-2-3-100-with-x-greatest-integer-function-can-we-find-a-general-formula-for-1-2-3-n-in-terms-of-n-

Question Number 80804 by mr W last updated on 06/Feb/20 $${Find} \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{\mathrm{100}}\right]=? \\ $$$${with}\:\left[{x}\right]={greatest}\:{integer}\:{function} \\ $$$$ \\ $$$${can}\:{we}\:{find}\:{a}\:{general}\:{formula}\:{for}\: \\ $$$$\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+…+\left[\sqrt{{n}}\right] \\ $$$${in}\:{terms}\:{of}\:{n}? \\ $$…

Question-146316

Question Number 146316 by mathdanisur last updated on 12/Jul/21 Answered by Ar Brandon last updated on 12/Jul/21 $$\mathrm{log}_{\mathrm{x}−\mathrm{2}} \left(\mathrm{2x}+\mathrm{7}\right)\leqslant\mathrm{1} \\ $$$$\mathrm{Conditions}; \\ $$$$\mathrm{2x}+\mathrm{7}>\mathrm{0}\:\wedge\:\mathrm{1}\neq\mathrm{x}−\mathrm{2}>\mathrm{0}, \\ $$$$\Rightarrow\left(\mathrm{x}>−\frac{\mathrm{7}}{\mathrm{2}}\right)\:\wedge\left(\:\mathrm{0}<\mathrm{x}−\mathrm{2}<\mathrm{1}\cup\mathrm{x}−\mathrm{2}>\mathrm{1}\right)…

4-sin-x-cos-x-3-

Question Number 146310 by mathdanisur last updated on 12/Jul/21 $$\mathrm{4}\:{sin}\left({x}\right)\:{cos}\left({x}\right)\:\geqslant\:\sqrt{\mathrm{3}} \\ $$ Commented by mathdanisur last updated on 12/Jul/21 $${Solve}\:{the}\:{trigonometric}\:{inequality} \\ $$ Commented by MJS_new…

lg-2-10x-lg-x-1-6-lg-x-x-

Question Number 146311 by mathdanisur last updated on 12/Jul/21 $${lg}^{\mathrm{2}} \left(\mathrm{10}{x}\right)\:+\:{lg}\left({x}\right)\:+\:\mathrm{1}\:=\:\mathrm{6}\:-\:{lg}\left({x}\right) \\ $$$$\Rightarrow\:{x}=? \\ $$ Commented by iloveisrael last updated on 13/Jul/21 $$\Rightarrow\left(\mathrm{1}+\mathrm{log}\:_{\mathrm{10}} \mathrm{x}\right)^{\mathrm{2}} +\mathrm{2log}\:_{\mathrm{10}}…

A-question-related-to-Q-15184-Find-the-maximum-of-f-x-ln-x-1-x-

Question Number 15234 by mrW1 last updated on 08/Jun/17 $$\mathrm{A}\:\mathrm{question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{Q}.\mathrm{15184} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{ln}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \\ $$ Commented by mrW1 last updated on 09/Jun/17 $$\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{ln}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \:\mathrm{is}\:\left[\mathrm{1},+\infty\right) \\ $$$$\mathrm{let}\:\mathrm{t}=\frac{\mathrm{1}}{\mathrm{x}},\:\mathrm{t}\in\left(\mathrm{0},\mathrm{1}\right]…