Menu Close

Category: Algebra

1-x-1-y-34-1-x-1-y-23-1-xy-find-the-solution-

Question Number 80702 by john santu last updated on 05/Feb/20 $$\begin{cases}{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\mathrm{34}}\\{\frac{\mathrm{1}}{\:\sqrt{{x}}}+\frac{\mathrm{1}}{\:\sqrt{{y}}}=\mathrm{23}−\frac{\mathrm{1}}{\:\sqrt{{xy}}}\:}\end{cases} \\ $$$${find}\:{the}\:{solution}. \\ $$ Commented by mind is power last updated on 05/Feb/20 $${let}\:\frac{\mathrm{1}}{\:\sqrt{{x}}}+\frac{\mathrm{1}}{\:\sqrt{{y}}}={u}…

1-cos-2-x-1-1-cos-x-1-x-

Question Number 146230 by mathdanisur last updated on 12/Jul/21 $$\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left({x}\right)}\:-\:\mathrm{1}\:+\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=\:\mathrm{1}\:\Rightarrow\:{x}=? \\ $$ Answered by qaz last updated on 12/Jul/21 $$\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}+\mathrm{sec}\:\mathrm{x}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sec}\:\mathrm{x}−\mathrm{2}=\mathrm{0}…

tg-2-x-1-cos-x-1-x-

Question Number 146227 by mathdanisur last updated on 12/Jul/21 $${tg}^{\mathrm{2}} \left({x}\right)\:-\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=\:\mathrm{1}\:\Rightarrow\:{x}=? \\ $$ Answered by gsk2684 last updated on 12/Jul/21 $$\frac{\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{cos}\:^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{\mathrm{cos}\:{x}}=\mathrm{1} \\ $$$$\mathrm{sin}\:^{\mathrm{2}}…

Question-146224

Question Number 146224 by mathdanisur last updated on 12/Jul/21 Answered by gsk2684 last updated on 12/Jul/21 $$\mathrm{1}!\:\mathrm{2}!\:\mathrm{3}!\:…\:\left({x}−\mathrm{1}\right)!\:=\mathrm{288}=\mathrm{2}^{\mathrm{5}} \mathrm{3}^{\mathrm{2}} \\ $$$${x}−\mathrm{1}\leqslant\mathrm{4} \\ $$$${observing}\:\mathrm{1}!\:\mathrm{2}!\:\mathrm{3}!\:\mathrm{4}!=\mathrm{288} \\ $$$${x}=\mathrm{5} \\…

dx-x-x-2-4-

Question Number 146215 by mathdanisur last updated on 12/Jul/21 $$\int\:\frac{{dx}}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 12/Jul/21 $$\mathrm{F}\left({x}\right)\:=\:\int\frac{{dx}}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}} \\ $$$$\mathrm{F}\left(\mathrm{2ch}{u}\right)\:=\:\int\frac{\mathrm{2sh}{udu}}{\:\mathrm{2ch}{u}\sqrt{\mathrm{4ch}^{\mathrm{2}} {u}−\mathrm{4}}}…