Menu Close

Category: Algebra

x-a-y-b-a-2-b-2-a-b-R-ab-x-2-y-2-xy-a-2-b-2-

Question Number 80145 by behi83417@gmail.com last updated on 31/Jan/20 $$\begin{cases}{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}=\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}}\right]}\\{\boldsymbol{\mathrm{ab}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}^{\mathrm{2}} \right)=\boldsymbol{\mathrm{xy}}\left(\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} \right)}\end{cases} \\ $$ Commented by john santu last updated on…

Compare-sin-43-and-sin-40-sin-3-

Question Number 145668 by mathdanisur last updated on 07/Jul/21 $${Compare}: \\ $$$${sin}\left(\mathrm{43}°\right)\:\:{and}\:\:{sin}\left(\mathrm{40}°\right)+{sin}\left(\mathrm{3}°\right) \\ $$ Answered by mr W last updated on 07/Jul/21 $$\mathrm{sin}\:\mathrm{43}°=\mathrm{sin}\:\left(\mathrm{40}+\mathrm{3}\right) \\ $$$$=\mathrm{cos}\:\mathrm{3}×\mathrm{sin}\:\mathrm{40}+\mathrm{cos}\:\mathrm{40}×\mathrm{sin}\:\mathrm{3}…

Question-14594

Question Number 14594 by 1kanika# last updated on 02/Jun/17 Answered by Tinkutara last updated on 02/Jun/17 $${f}\left({x}\right)\:=\:{Q}\left({x}\:−\:\mathrm{2}\right)\left({x}\:−\:\mathrm{3}\right)\:+\:{ax}\:+\:{b} \\ $$$$\mathrm{3}{a}\:+\:{b}\:=\:\mathrm{2} \\ $$$$\mathrm{2}{a}\:+\:{b}\:=\:\mathrm{3} \\ $$$$\Rightarrow\:{a}\:=\:−\mathrm{1},\:{b}\:=\:\mathrm{5} \\ $$$$\mathrm{Remainder}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by}…

Question-145666

Question Number 145666 by mathdanisur last updated on 07/Jul/21 Answered by Rasheed.Sindhi last updated on 07/Jul/21 $$\mid{x}+\mathrm{1}\mid+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{4}}+\mid{x}−{z}\mid+\mid{z}−\mathrm{3}\mid=\mathrm{4} \\ $$$$….. \\ $$$$…. \\ $$ Commented…

Question-145660

Question Number 145660 by imjagoll last updated on 07/Jul/21 Answered by Olaf_Thorendsen last updated on 08/Jul/21 $$!\mathrm{4}\:=\:\mathrm{4}!\left(\frac{\mathrm{1}}{\mathrm{0}!}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}\right) \\ $$$$!\mathrm{4}\:=\:\mathrm{9} \\ $$$$!\mathrm{5}\:=\:\mathrm{5}!\left(\frac{\mathrm{1}}{\mathrm{0}!}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}−\frac{\mathrm{1}}{\mathrm{5}!}\right) \\ $$$$!\mathrm{5}\:=\:\mathrm{44} \\ $$$$!\mathrm{7}\:=\:\mathrm{7}!\left(\frac{\mathrm{1}}{\mathrm{0}!}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}−\frac{\mathrm{1}}{\mathrm{5}!}+\frac{\mathrm{1}}{\mathrm{6}!}−\frac{\mathrm{1}}{\mathrm{7}!}\right)…