Menu Close

Category: Algebra

cos-pi-2-1-2-arccos-4-5-

Question Number 149408 by mathdanisur last updated on 05/Aug/21 $${cos}\left(\frac{\pi}{\mathrm{2}}\:-\:\frac{\mathrm{1}}{\mathrm{2}}\:{arccos}\:\frac{\mathrm{4}}{\mathrm{5}}\right)\:=\:? \\ $$ Commented by liberty last updated on 05/Aug/21 $$\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arccos}\:\frac{\mathrm{4}}{\mathrm{5}}\right)=\mathrm{sin}\:\mathrm{u} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arccos}\:\frac{\mathrm{4}}{\mathrm{5}}=\mathrm{u}\:\Rightarrow\mathrm{arccos}\:\frac{\mathrm{4}}{\mathrm{5}}=\mathrm{2u} \\ $$$$\mathrm{cos}\:\mathrm{2u}=\frac{\mathrm{4}}{\mathrm{5}}\Rightarrow\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{u}=\frac{\mathrm{4}}{\mathrm{5}}…

If-equation-x-2-y-2-x-4-2-y-2-x-2-y-3-2-x-4-2-y-3-2-10-x-2y-5z-has-solution-is-a-b-c-find-a-2b-3c-

Question Number 83871 by jagoll last updated on 07/Mar/20 $$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\…

if-f-x-dx-x-3-3x-2-c-find-f-2-

Question Number 149405 by mathdanisur last updated on 05/Aug/21 $${if}\:\:\:\int{f}\left({x}\right){dx}\:=\:{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} −{c} \\ $$$${find}\:\:\:{f}\left(−\mathrm{2}\right)\:=\:? \\ $$ Commented by liberty last updated on 05/Aug/21 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3x}^{\mathrm{2}} −\mathrm{6x}…

Question-149400

Question Number 149400 by mathdanisur last updated on 05/Aug/21 Answered by liberty last updated on 05/Aug/21 $$\mathrm{let}\:\mathrm{tan}\:\mathrm{2}=\mathrm{x}\:\begin{cases}{\mathrm{sin}\:\mathrm{2}=\frac{\mathrm{x}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}}\\{\mathrm{cos}\:\mathrm{2}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}}\end{cases} \\ $$$$\mathrm{let}\:\mathrm{cos}\:\mathrm{6}=\mathrm{y}\Rightarrow\mathrm{2cos}\:^{\mathrm{2}} \mathrm{3}−\mathrm{1}=\mathrm{y} \\ $$$$\mathrm{cos}\:\mathrm{3}=\sqrt{\frac{\mathrm{y}+\mathrm{1}}{\mathrm{2}}}\:\wedge\:\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{3}=\mathrm{y}…

Question-149395

Question Number 149395 by mathdanisur last updated on 05/Aug/21 Answered by Olaf_Thorendsen last updated on 05/Aug/21 $$\int_{{a}} ^{{b}} {f}\left({x}\right)\:{dx}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{b}−{a}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({a}+{k}\frac{{b}−{a}}{{n}}\right) \\ $$$$\int_{\mathrm{3}} ^{\mathrm{5}}…

Question-83834

Question Number 83834 by Power last updated on 06/Mar/20 Commented by niroj last updated on 06/Mar/20 $$\:\:\int\:\frac{\:\:\mathrm{1}}{\:\sqrt{\mathrm{x}\left(\mathrm{a}−\mathrm{x}\right)}}\mathrm{dx} \\ $$$$\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{ax}−\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}=\:\int\:\frac{\:\mathrm{1}}{\:\sqrt{−\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2x}.\frac{\mathrm{a}}{\mathrm{2}}+\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\right)}}\mathrm{dx} \\ $$$$\:=\:\int\:\frac{\mathrm{1}}{\:\sqrt{−\left[\left(\mathrm{x}−\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}}…

x-x-x-2-find-x-

Question Number 18299 by tawa tawa last updated on 18/Jul/17 $$\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:=\:\mathrm{2},\:\:\:\:\:\:\mathrm{find}\:\:\mathrm{x} \\ $$ Commented by mrW1 last updated on 19/Jul/17 $$\mathrm{no}\:\mathrm{analytic}\:\mathrm{solution} \\ $$$$\sqrt{\mathrm{2}}<\mathrm{x}<\mathrm{2}…

Question-83822

Question Number 83822 by Power last updated on 06/Mar/20 Commented by mathmax by abdo last updated on 07/Mar/20 $${I}\:=\int\:\:\frac{{dx}}{\:\sqrt{\mathrm{2}{x}−\mathrm{1}}−^{\mathrm{4}} \sqrt{\mathrm{2}{x}−\mathrm{1}}}\:{cha}\mathrm{7}{gement}\:\:^{\mathrm{4}} \sqrt{\mathrm{2}{x}−\mathrm{1}}={t}\:{give} \\ $$$$\mathrm{2}{x}−\mathrm{1}\:={t}^{\mathrm{4}} \:\Rightarrow\mathrm{2}{x}=\mathrm{1}+{t}^{\mathrm{4}} \:\Rightarrow\:\mathrm{2}{dx}\:=\mathrm{4}{t}^{\mathrm{3}}…

Question-83824

Question Number 83824 by Power last updated on 06/Mar/20 Commented by mathmax by abdo last updated on 06/Mar/20 $${changement}\:{x}=\frac{\pi}{\mathrm{2}}−{t}\:{give} \\ $$$$\Omega\:=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\pi\left(\frac{\pi}{\mathrm{2}}−{t}\right)+{cos}^{\mathrm{4}} {t}−{sin}^{\mathrm{4}} {t}}{{cos}^{\mathrm{4}}…