Question Number 13081 by 433 last updated on 13/May/17 $$\begin{cases}{{x}+{y}+{z}=\left[\mathrm{1}\right]_{\mathrm{5}} }\\{{xy}=\left[\mathrm{2}\right]_{\mathrm{5}} }\\{{yz}=\left[\mathrm{1}\right]_{\mathrm{5}} }\end{cases} \\ $$$${Solve}\:{system}\:{on}\:\mathbb{Z}_{\mathrm{5}} \\ $$ Answered by RasheedSindhi last updated on 14/May/17 $$\:^{{Rasheed}\:{Soomro}}…
Question Number 144148 by bobhans last updated on 22/Jun/21 $$\begin{cases}{\mathrm{2ln}\:\mathrm{x}+\mathrm{ln}\:\mathrm{y}\:=\:\mathrm{2}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2}} +\mathrm{1}}\end{cases} \\ $$ Answered by EDWIN88 last updated on 22/Jun/21 $$\:\begin{cases}{\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{e}^{\mathrm{2}} }\\{\mathrm{x}^{\mathrm{2}} +\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2}}…
Question Number 144132 by islamo last updated on 21/Jun/21 Answered by ArielVyny last updated on 22/Jun/21 $$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{ln}\left({n}\right)^{{ln}\left({n}\right)} }\backsim\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{{n}} }\:\left({CV}\right) \\ $$ Answered by…
Question Number 144120 by mathdanisur last updated on 21/Jun/21 $${log}_{\mathrm{2}} \mathrm{3}\:=\:{x}\:,\:{log}_{\mathrm{3}} \mathrm{5}\:=\:{y}\:,\:{lg}\mathrm{6}\:=\:? \\ $$ Answered by Ar Brandon last updated on 21/Jun/21 $$\mathrm{log}_{\mathrm{3}} \mathrm{5}=\mathrm{y}\Rightarrow\mathrm{log}_{\mathrm{2}} \mathrm{5}=\mathrm{xy}…
Question Number 144118 by loveineq last updated on 21/Jun/21 $$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+{c}\:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{{ab}}+\mathrm{1}}{\:\sqrt{{ab}}+\sqrt{{c}}}+\frac{\sqrt{{bc}}+\mathrm{1}}{\:\sqrt{{bc}}+\sqrt{{a}}}+\frac{\sqrt{{ca}}+\mathrm{1}}{\:\sqrt{{ca}}+\sqrt{{b}}}\:\geqslant\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 13034 by FilupS last updated on 12/May/17 $$\mathrm{MrW1} \\ $$$$\: \\ $$$$\mathrm{Before}\:\mathrm{we}\:\mathrm{concluded}\:\mathrm{that}: \\ $$$$\Phi=\underset{{x}=\mathrm{0}} {\overset{{m}} {\sum}}\underset{{y}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\mathrm{1}−\mathrm{sgn}\left({x}−{x}'\right)\right) \\ $$$$\: \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{do}: \\…
Question Number 78568 by TawaTawa last updated on 18/Jan/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{bx}^{\mathrm{3}} \:−\:\left(\mathrm{3b}\:+\:\mathrm{2}\right)\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2}\left(\mathrm{5b}\:−\:\mathrm{3}\right)\mathrm{x}\:+\:\mathrm{20}\:\:=\:\:\mathrm{0} \\ $$ Answered by key of knowledge last updated on 18/Jan/20…
Question Number 144106 by mathdanisur last updated on 21/Jun/21 $$\underset{{x}\rightarrow\infty} {{lim}}\frac{\mathrm{4}^{{x}-\mathrm{2}} \:+\:\mathrm{3}^{{x}} \:+\:\mathrm{2}^{{x}} }{\mathrm{4}^{{x}-\mathrm{1}} \:+\:\mathrm{3}^{{x}+\mathrm{1}} }\:=\:? \\ $$ Commented by bobhans last updated on 22/Jun/21…
Question Number 13031 by FilupS last updated on 12/May/17 $$\mathrm{MrW1} \\ $$$$ \\ $$$$\mathrm{Going}\:\mathrm{off}\:\mathrm{of}\:\mathrm{Q12883} \\ $$$$\: \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{unique}\:\mathrm{angles}\:\mathrm{angles}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{3}} ? \\ $$$$\mathrm{What}\:\mathrm{about}\:\mathbb{Z}^{{n}} ? \\ $$ Answered…
Question Number 13029 by chux last updated on 11/May/17 Commented by chux last updated on 12/May/17 $$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{out}….\: \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$ Answered by…