Menu Close

Category: Algebra

dear-sir-W-Mjs-the-set-1-4-n-have-the-condition-that-if-two-different-elements-are-selected-and-2112-is-added-to-the-result-then-the-result-is-a-perfect-square-if-n-is-a-positif-number-then

Question Number 78399 by john santu last updated on 17/Jan/20 $${dear}\:{sir}\:{W},\:{Mjs}\: \\ $$$${the}\:{set}\:\left\{\mathrm{1},\mathrm{4},{n}\right\}\:{have}\:{the}\:{condition}\:{that}\: \\ $$$${if}\:{two}\:{different}\:{elements}\:{are} \\ $$$${selected}\:{and}\:\mathrm{2112}\:{is}\:{added}\:{to} \\ $$$${the}\:{result}\:,\:{then}\:{the}\:{result}\: \\ $$$${is}\:{a}\:{perfect}\:{square}\:{if}\:{n}\:{is}\:{a}\: \\ $$$${positif}\:{number}\:.\:{then}\:{the}\:{number}\: \\ $$$${of}\:{possible}\:{values}\:{of}\:{n}\:{is}\:…

Question-143906

Question Number 143906 by mathdanisur last updated on 19/Jun/21 Answered by TheHoneyCat last updated on 19/Jun/21 $$\Leftrightarrow{x}^{{x}} −{y}^{{y}} ={e}.\mathrm{ln}\left(\frac{{y}}{{x}}\right)={e}\left(\mathrm{ln}\left({y}\right)−\mathrm{ln}\left({x}\right)\right) \\ $$$$\Leftrightarrow{x}^{{x}} +{e}\mathrm{ln}{x}={y}^{{y}} +{e}\mathrm{ln}{y} \\ $$$$…

Show-that-1-6x-1-1-6x-1-3x-1-1-3x-4-6x-Ignoring-higher-power-of-x-in-the-expansion-

Question Number 78357 by TawaTawa last updated on 16/Jan/20 $$\mathrm{Show}\:\mathrm{that}:\:\:\:\frac{\sqrt{\mathrm{1}\:+\:\mathrm{6x}}\:\:−\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\mathrm{6x}}}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{3x}}\:\:−\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\mathrm{3x}}}}\:\:\:\:\:=\:\:\:\mathrm{4}\:+\:\mathrm{6x} \\ $$$$\mathrm{Ignoring}\:\mathrm{higher}\:\mathrm{power}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion} \\ $$ Commented by MJS last updated on 16/Jan/20 $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{the}\:\mathrm{left}\:\mathrm{handed}\:\mathrm{side}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{for} \\…

Let-a-b-c-R-and-a-b-b-c-1-where-0-lt-b-1-Prove-that-a-b-b-c-a-b-b-c-2-

Question Number 78351 by loveineq. last updated on 16/Jan/20 $$\mathrm{Let}\:\:{a},{b},{c}\:\in\:\mathrm{R}^{+} \:\:\mathrm{and}\:\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{1}\:,\:\mathrm{where}\:\:\mathrm{0}\:<{b}\leqslant\:\mathrm{1}\:. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\frac{\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid}{\mathrm{2}}\:. \\ $$ Commented by loveineq. last updated on 19/Jan/20 $$\mathrm{More}\:\mathrm{stronger}\:\mathrm{is}\:\:\mid{a}−{b}\mid\mid{b}−{c}\mid\:\geqslant\:\mid\sqrt{{a}}−\sqrt{{b}}\mid\mid\sqrt{{b}}−\sqrt{{c}}\mid\:. \\ $$…

Let-a-b-c-gt-0-and-c-2-ab-bc-ca-3-Prove-that-a-3-b-3-2c-3-a-3-b-3-c-3-3-a-2-b-2-2c-2-a-2-b-2-c-2-

Question Number 78340 by loveineq. last updated on 16/Jan/20 $$\mathrm{Let}\:\:{a},{b},{c}\:>\:\mathrm{0}\:\:\mathrm{and}\:\:{c}^{\mathrm{2}} \:=\:\frac{{ab}+{bc}+{ca}}{\mathrm{3}}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} −\mathrm{2}{c}^{\mathrm{3}} }{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} }\:\leqslant\:\mathrm{3}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\right)…