Menu Close

Category: Algebra

Question-81892

Question Number 81892 by Power last updated on 16/Feb/20 Answered by MJS last updated on 16/Feb/20 $$\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{next}\:\mathrm{number}\:\Rightarrow\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{not}\:\mathrm{unique} \\ $$ Commented by mr W…

f-x-1-x-2-x-2018-f-0-

Question Number 147402 by vvvv last updated on 20/Jul/21 $$\boldsymbol{{f}}\left(\boldsymbol{{x}}+\mathrm{1}\right)\left(\boldsymbol{{x}}+\mathrm{2}\right)….\left(\boldsymbol{{x}}+\mathrm{2018}\right) \\ $$$$\boldsymbol{{f}}'\left(\mathrm{0}\right)=? \\ $$ Answered by SEKRET last updated on 21/Jul/21 $$\:\:\boldsymbol{\mathrm{y}}=\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)\centerdot….\left(\boldsymbol{\mathrm{x}}+\mathrm{2018}\right) \\ $$$$\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:=\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)+\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)+..+\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}+\mathrm{2018}\right) \\…

hi-everybody-T-x-5-3x-2-2-is-reductible-in-Q-

Question Number 147364 by henderson last updated on 20/Jul/21 $$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{T}}\:=\:\boldsymbol{{x}}^{\mathrm{5}} +\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{reductible}}\:\boldsymbol{\mathrm{in}}\:\mathbb{Q}\:? \\ $$ Answered by Olaf_Thorendsen last updated on 20/Jul/21 $$\mathrm{T}\in\mathbb{Q}\left[\mathrm{X}\right],\:\mathrm{T}\left({x}\right)\:=\:{x}^{\mathrm{5}} +\mathrm{3}{x}^{\mathrm{2}}…

Question-81821

Question Number 81821 by ahmadshahhimat775@gmail.com last updated on 15/Feb/20 Answered by TANMAY PANACEA last updated on 15/Feb/20 $$\mathrm{1899}=\mathrm{3}×\mathrm{633} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3}×\mathrm{3}×\mathrm{211}=\mathrm{3}^{\mathrm{2}} ×\left(\mathrm{211}\right)^{\mathrm{1}} \\ $$$${number}\:{of}\:{devisor}=\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)=\mathrm{6} \\ $$$${formula}\:\:{N}={a}^{{p}}…

Question-81786

Question Number 81786 by M±th+et£s last updated on 15/Feb/20 Commented by M±th+et£s last updated on 16/Feb/20 $${no}\:{its}\:{right}\:{no}\:{problem}\:{with}\:{tbe}\:{ans} \\ $$$${but}\:{i}\:{need}\:{to}\:{now}\:{how}\:{you}\:{get}\:\left({x},{y},{z}\right)=\left(\mathrm{1},\mathrm{1},\mathrm{1}\right) \\ $$ Commented by john santu…

Question-147312

Question Number 147312 by mathdanisur last updated on 19/Jul/21 Answered by Olaf_Thorendsen last updated on 19/Jul/21 $$\mathrm{A}+\mathrm{B}\:=\:\mathrm{AB} \\ $$$$\Leftrightarrow\:\mathrm{AB}−\mathrm{A}−\mathrm{B}\:=\:\overset{\sim} {\mathrm{0}} \\ $$$$\Leftrightarrow\:\mathrm{AB}−\mathrm{A}−\mathrm{B}+\mathrm{I}_{{n}} \:=\:\mathrm{I}_{{n}} \\ $$$$\Leftrightarrow\:\left(\mathrm{A}−\mathrm{I}_{{n}}…