Menu Close

Category: Algebra

Question-12197

Question Number 12197 by tawa last updated on 16/Apr/17 Commented by mrW1 last updated on 16/Apr/17 $${I}\:{think}\:{we}\:{can}\:{not}\:{find}\:{an}\:{analytical} \\ $$$${solution}.\:{The}\:{numerical}\:{solution}\:{can} \\ $$$${be}\:{found}\:{using}\:{a}\:{lot}\:{of}\:{apps},\:{e}.{g}.\:{geogebra}. \\ $$$${x}\approx\mathrm{2}.\mathrm{76909366} \\ $$…

Question-77721

Question Number 77721 by BK last updated on 09/Jan/20 Commented by MJS last updated on 09/Jan/20 $$\left(\mathrm{1}\right)\:\mathrm{divide}\:\mathrm{by}\:\mathrm{5} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{let}\:{x}={t}−\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{solve}\:\mathrm{for}\:{t} \\ $$ Terms of…

Question-143251

Question Number 143251 by aliibrahim1 last updated on 12/Jun/21 Answered by MJS_new last updated on 12/Jun/21 $$\mathrm{let}\:{x}={r}\mathrm{e}^{\mathrm{i}\theta} \wedge{r}>\mathrm{0}\wedge\mathrm{0}\leqslant\theta<\mathrm{2}\pi \\ $$$${r}\mathrm{e}^{\mathrm{i}\theta} +\frac{\mathrm{3}}{\:{r}^{\mathrm{1}/\mathrm{2}} \mathrm{e}^{\mathrm{i}\theta/\mathrm{2}} }=\mathrm{0} \\ $$$${r}^{\mathrm{3}/\mathrm{2}}…

2-y-1-x-a-y-1-x-2-4a-y-Is-equations-system-

Question Number 143240 by cesarL last updated on 11/Jun/21 $$\frac{\mathrm{2}}{{y}}=\frac{\mathrm{1}}{{x}}\left(\frac{{a}}{{y}}+\mathrm{1}\right) \\ $$$${x}=\mathrm{2}\left(\mathrm{4}{a}−{y}\right) \\ $$$${Is}\:{equations}\:{system} \\ $$ Answered by MJS_new last updated on 11/Jun/21 $$\frac{\mathrm{2}}{{y}}=\frac{\mathrm{1}}{{x}}\left(\frac{{a}}{{y}}+\mathrm{1}\right)\:\Leftrightarrow\:\mathrm{2}{x}={a}+{y}\:\Leftrightarrow\:{x}=\frac{{a}+{y}}{\mathrm{2}} \\…

x-2-sgn-2x-dx-

Question Number 12171 by uni last updated on 15/Apr/17 $$\int\mathrm{x}^{\mathrm{2}} ×\mathrm{sgn}\left(\mathrm{2x}\right)\mathrm{dx}=? \\ $$ Answered by mrW1 last updated on 15/Apr/17 $${f}\left({x}\right)={x}^{\mathrm{2}} ×{sgn}\left(\mathrm{2}{x}\right) \\ $$$$=\begin{cases}{{x}^{\mathrm{2}} \:\:\:{x}>\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:{x}=\mathrm{0}}\\{−{x}^{\mathrm{2}}…

Question-143234

Question Number 143234 by mathdanisur last updated on 11/Jun/21 Answered by mr W last updated on 11/Jun/21 $${F}={x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} +\lambda\left(\alpha{x}+\alpha{y}+\gamma{z}−\mathrm{1}\right) \\ $$$$\frac{\partial{F}}{\partial{x}}=\mathrm{3}{x}^{\mathrm{2}} +\lambda\alpha=\mathrm{0}\: \\…