Menu Close

Category: Algebra

2x-2x-3-9-0-if-there-s-a-solution-to-equation-find-4a-3-

Question Number 147011 by mathdanisur last updated on 17/Jul/21 $$\mathrm{2}{x}\:-\:\sqrt{\mathrm{2}{x}\:-\:\mathrm{3}}\:-\:\mathrm{9}\:=\:\mathrm{0} \\ $$$${if}\:{there}'{s}\:\boldsymbol{{a}}\:{solution}\:{to}\:{equation}, \\ $$$${find}\:\:\mathrm{4}\boldsymbol{{a}}\:+\:\mathrm{3}\:=\:? \\ $$ Commented by 7770 last updated on 17/Jul/21 $$\:\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{36}\boldsymbol{{x}}+\mathrm{81}−\mathrm{2}\boldsymbol{{x}}+\mathrm{3}=\mathrm{0}…

Question-15927

Question Number 15927 by ajfour last updated on 15/Jun/17 Commented by ajfour last updated on 15/Jun/17 $${Q}.\mathrm{15917}\:\left({sorry}\:{it}\:{got}\:{uploaded}\right. \\ $$$$\left.{as}\:{new}\:{question}\right) \\ $$$${mid}\:{points}\:{of}\:{the}\:{sides}\:{of}\: \\ $$$${quadrilateral}\:{ABCD}\:{are}\: \\ $$$${E},\:{F},\:{G},\:{and}\:{H}.\:{Midpoints}\:{of}…

if-z-2-4-z-2i-5-10i-find-Re-Z-Im-Z-

Question Number 146988 by mathdanisur last updated on 16/Jul/21 $${if}\:\:\:\frac{\boldsymbol{{z}}^{\mathrm{2}} \:+\:\mathrm{4}}{\boldsymbol{{z}}\:-\:\mathrm{2}\boldsymbol{{i}}}\:=\:−\mathrm{5}\:+\:\mathrm{10}\boldsymbol{{i}} \\ $$$${find}\:\:\:{Re}\left({Z}\right)\:+\:{Im}\left({Z}\right)\:=\:? \\ $$ Commented by aliibrahim1 last updated on 17/Jul/21 $${z}^{\mathrm{2}} +\mathrm{4}=\left({z}−\mathrm{2}{i}\right)\left({z}+\mathrm{2}{i}\right) \\…

Simplify-x-1-2-y-1-2-x-1-6-y-1-6-x-1-2-y-1-2-x-1-6-y-1-6-

Question Number 146989 by mathdanisur last updated on 16/Jul/21 $${Simplify}: \\ $$$$\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:{y}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:{y}^{\frac{\mathrm{1}}{\mathrm{6}}} }\:\:-\:\:\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:-\:{y}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:-\:{y}^{\frac{\mathrm{1}}{\mathrm{6}}} }\:=\:? \\ $$ Commented by 7770…

Simplify-2-2-2-2-2-2-2-

Question Number 146964 by mathdanisur last updated on 16/Jul/21 $${Simplify}: \\ $$$$\frac{\sqrt{\mathrm{2}}\:\centerdot\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}}}\:\centerdot\:\sqrt{\mathrm{2}\:-\:\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 16/Jul/21 $${x}\:=\:\frac{\sqrt{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}.\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}} \\ $$$${x}\:=\:\frac{\sqrt{\mathrm{2}}\sqrt{\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}} \\…

sin-x-cos-x-lt-0-

Question Number 146961 by mathdanisur last updated on 16/Jul/21 $$\sqrt{{sin}\left({x}\right)}\:\centerdot\:{cos}\left({x}\right)\:<\:\mathrm{0} \\ $$ Answered by TheHoneyCat last updated on 16/Jul/21 $$\mathrm{this}\:\mathrm{expression}\:_{''\sqrt{}''} \:\mathrm{requires}\:\mathrm{that}\:{sin}\left({x}\right)>\mathrm{0} \\ $$$$\mathrm{thus}\:{cos}\left({x}\right)<\mathrm{0} \\ $$$$…

Question-146960

Question Number 146960 by mathdanisur last updated on 16/Jul/21 Answered by TheHoneyCat last updated on 16/Jul/21 $$\mathrm{let}\:\mathscr{A}\:\mathrm{be}\:\mathrm{the}\:\mathrm{fuction}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{surface} \\ $$$$\mathrm{let}\:\Delta={ABO} \\ $$$$\mathrm{let}\:{x}\:\mathrm{be}\:\mathrm{the}\:\mathrm{hatched}\:\mathrm{area} \\ $$$$\mathrm{let}\:{D}\:\mathrm{be}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{between}\:\left[\mathrm{AO}\right]\:\mathrm{and}\:\mathrm{the}\:\mathrm{circle}\:\mathscr{C}\left({O},{OR}\right) \\ $$$$\mathrm{let}\:{y}\:\mathrm{be}\:\mathrm{the}\:\mathrm{portion}\:{AOD}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}…