Question Number 202129 by MATHEMATICSAM last updated on 21/Dec/23 $$\mathrm{If}\:{p}\:=\:\mathrm{9999}\:\mathrm{then}\:\frac{\mathrm{4}{p}^{\mathrm{3}} \:−\:{p}}{\left(\mathrm{2}{p}\:+\:\mathrm{1}\right)\left(\mathrm{6}{p}\:−\:\mathrm{3}\right)}\:=\:? \\ $$ Answered by AST last updated on 21/Dec/23 $$\frac{{p}\left(\mathrm{2}{p}−\mathrm{1}\right)\left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{3}\left(\mathrm{2}{p}+\mathrm{1}\right)\left(\mathrm{2}{p}−\mathrm{1}\right)}=\frac{{p}=\mathrm{9999}}{\mathrm{3}}=\mathrm{3333} \\ $$ Terms of…
Question Number 202120 by MATHEMATICSAM last updated on 21/Dec/23 $$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{If}\:\:\frac{\mathrm{1}\:−\:\alpha}{\alpha}\:\mathrm{and}\:\frac{\mathrm{1}\:−\:\beta}{\beta}\:\mathrm{are} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{a}_{\mathrm{1}} {x}^{\mathrm{2}} \:+\:{b}_{\mathrm{1}} {x}\:+\:{c}_{\mathrm{1}} \:=\:\mathrm{0}.\:\mathrm{If} \\ $$$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\:=\:{k}\:+\:\frac{{b}}{{c}}\:\mathrm{then}\:{k}\:=\:? \\ $$…
Question Number 202116 by Calculusboy last updated on 21/Dec/23 $$\sqrt{\mathrm{3}^{\boldsymbol{{x}}} }\:+\mathrm{1}=\mathrm{2}^{\boldsymbol{{x}}} \:\:\:\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$ Answered by Frix last updated on 21/Dec/23 $$\mathrm{Obviously}\:{x}=\mathrm{2} \\ $$$$\sqrt{\mathrm{3}^{\mathrm{2}} }+\mathrm{1}=\sqrt{\mathrm{9}}+\mathrm{1}=\mathrm{3}+\mathrm{1}=\mathrm{4}=\mathrm{2}^{\mathrm{2}}…
Question Number 202146 by hardmath last updated on 21/Dec/23 $$ \\ $$There are three children in a family. Two of the children have blood group…
Question Number 202114 by MATHEMATICSAM last updated on 21/Dec/23 $$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\alpha\:+\:{k}\:\mathrm{and}\:\beta\:+\:{k}\:\:\mathrm{are}\: \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{lx}^{\mathrm{2}} \:+\:{mx}\:+\:{n}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{k}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{b}}{{a}}\:−\:\frac{{m}}{{l}}\right). \\ $$ Answered by aleks041103 last updated…
Question Number 202109 by hardmath last updated on 20/Dec/23
Question Number 202104 by necx122 last updated on 20/Dec/23 Commented by necx122 last updated on 20/Dec/23 $${please}\:{help}\:{with}\:{this} \\ $$ Commented by cortano12 last updated on…
Question Number 202102 by MATHEMATICSAM last updated on 20/Dec/23 $$\mathrm{If}\:{x}\:=\:\mathrm{3}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{then}\:\frac{{x}^{\mathrm{6}} \:+\:{x}^{\mathrm{4}} \:+\:{x}^{\mathrm{2}} \:+\:\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:? \\ $$ Answered by AST last updated on 20/Dec/23 $${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}=\mathrm{6} \\…
Question Number 202044 by hardmath last updated on 19/Dec/23 $$\mathrm{If} \\ $$$$\mathrm{a}\:=\:\mathrm{9999999998000000001} \\ $$$$\mathrm{Find} \\ $$$$\mathrm{A}\:=\:\sqrt[{\mathrm{9}}]{\sqrt{\mathrm{a}}\:+\:\mathrm{1}}\:\:\:\rightarrow\:\:\:\mathrm{A}\:=\:? \\ $$ Commented by mr W last updated on…
Question Number 202041 by hardmath last updated on 19/Dec/23 $$\mathrm{Simplify}:\:\:\:\frac{\sqrt{\mathrm{2}}\:−\:\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha}{\mathrm{sin}\alpha\:−\:\mathrm{cos}\alpha} \\ $$ Answered by cortano12 last updated on 19/Dec/23 $$\:=\:\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\alpha+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:\alpha\right)}{\:\sqrt{\mathrm{2}}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{sin}\:\alpha−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{cos}\:\alpha\right)} \\ $$$$\:=\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\alpha−\mathrm{45}°\right)}{\mathrm{sin}\:\:\left(\alpha−\mathrm{45}°\right)} \\ $$$$\:=\:\mathrm{csc}\:\left(\alpha−\mathrm{45}°\right)−\mathrm{cot}\:\left(\alpha−\mathrm{45}°\right) \\…