Menu Close

Category: Algebra

suppose-the-equations-x-2-px-4-0-and-x-2-qx-3-0-have-a-common-root-write-this-root-in-terms-of-the-other-root-

Question Number 77119 by necxxx last updated on 03/Jan/20 $${suppose}\:{the}\:{equations}\:{x}^{\mathrm{2}} +{px}+\mathrm{4}=\mathrm{0} \\ $$$${and}\:{x}^{\mathrm{2}} +{qx}+\mathrm{3}=\mathrm{0}\:\:{have}\:{a}\:{common}\:{root}, \\ $$$${write}\:{this}\:{root}\:{in}\:{terms}\:{of}\:{the}\:{other}\:{root}. \\ $$ Answered by jagoll last updated on 03/Jan/20…

1-2018-2-2018-3-2018-4-2018-2016-2018-2017-2018-

Question Number 142647 by iloveisrael last updated on 03/Jun/21 $$\:\frac{\mathrm{1}}{\mathrm{2018}}−\frac{\mathrm{2}}{\mathrm{2018}}+\frac{\mathrm{3}}{\mathrm{2018}}−\frac{\mathrm{4}}{\mathrm{2018}}+…−\frac{\mathrm{2016}}{\mathrm{2018}}+\frac{\mathrm{2017}}{\mathrm{2018}}=? \\ $$ Answered by MJS_new last updated on 03/Jun/21 $$\underset{{j}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}\left(\mathrm{2}{j}+\mathrm{1}\right)−\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{j}\right)={n}+\mathrm{1} \\…

fine-the-equation-and-the-corresponding-sketch-of-graph-of-the-imageof-the-straight-line-joining-1-1-and-2-1-under-the-transformation-equation-w-2-i-z-

Question Number 142624 by Engr_Jidda last updated on 03/Jun/21 $${fine}\:{the}\:{equation}\:{and}\:{the}\:{corresponding} \\ $$$${sketch}\:{of}\:{graph}\:{of}\:{the}\:{imageof}\:{the} \\ $$$${straight}\:{line}\:{joining}\:\left(−\mathrm{1},−\mathrm{1}\right)\:{and} \\ $$$$\left(\mathrm{2},\mathrm{1}\right)\:{under}\:{the}\:{transformation}\:{equation} \\ $$$${w}=\left(\mathrm{2}+{i}\right){z} \\ $$ Terms of Service Privacy Policy…

Question-77067

Question Number 77067 by Boyka last updated on 03/Jan/20 Commented by Boyka last updated on 03/Jan/20 $$\left[\mathrm{x}\right]−\mathrm{whole}\:\mathrm{part}\:\: \\ $$$$\boldsymbol{\mathrm{x}}=\left[\boldsymbol{\mathrm{x}}\right]+\left\{\boldsymbol{\mathrm{x}}\right\} \\ $$ Commented by mr W…

Question-142607

Question Number 142607 by mathdanisur last updated on 02/Jun/21 Answered by mr W last updated on 03/Jun/21 $${A}_{{max}} =\mathrm{10}^{\mathrm{3}} +\mathrm{5}^{\mathrm{3}} +\mathrm{10}×\mathrm{5}=\mathrm{1175} \\ $$$${A}_{{min}} =−\mathrm{10}^{\mathrm{3}} −\mathrm{5}^{\mathrm{3}}…