Menu Close

Category: Algebra

express-in-partial-fraction-3x-2-x-2-1-x-1-

Question Number 10907 by j.masanja06@gmail.com last updated on 01/Mar/17 $$\mathrm{express}\:\mathrm{in}\:\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)} \\ $$ Answered by sandy_suhendra last updated on 01/Mar/17 $$=\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}+\mathrm{1}\right)}=\frac{\mathrm{3x}+\mathrm{2}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{1}\right)} \\…

given-N-4-5-1-5-1-4-1-5-1-8-1-5-1-16-1-find-value-of-N-1-48-

Question Number 76438 by john santu last updated on 27/Dec/19 $${given}\:{N}\:=\frac{\mathrm{4}}{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{8}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{16}}} +\mathrm{1}\right)} \\ $$$${find}\:{value}\:{of}\:\left({N}+\mathrm{1}\right)^{\mathrm{48}} . \\ $$ Answered by mr W last updated…

Question-76436

Question Number 76436 by Master last updated on 27/Dec/19 Answered by john santu last updated on 27/Dec/19 $$\frac{\mathrm{1}}{{abc}}+\frac{{a}+{c}}{{ac}}=\frac{\mathrm{1}}{{b}} \\ $$$$\frac{{ab}+{bc}+\mathrm{1}}{{abc}}=\frac{\mathrm{1}}{{b}}\rightarrow{ab}+{bc}+\mathrm{1}={ac} \\ $$$${ab}+{bc}={ac}−\mathrm{1}\:\rightarrow{b}=\frac{{ac}−\mathrm{1}}{{a}+{c}} \\ $$$${by}\:{substitusi} \\…

Question-76428

Question Number 76428 by TawaTawa last updated on 27/Dec/19 Answered by john santu last updated on 27/Dec/19 $$\left(\mathrm{5}\right){ratio}\:=\:\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }.\:\rightarrow{a}_{\mathrm{2}} =\mathrm{10}.{a}_{\mathrm{1}} =\mathrm{10}. \\ $$$${now}\:{a}_{{n}\:} ={a}_{\mathrm{1}}…

In-a-cultural-gathering-of-400-people-there-are-270-men-and-200-musicians-Of-the-latter-80-are-singers-60-of-the-women-are-not-musicians-and-220-of-the-men-are-not-singers-How-many-of-the-women-

Question Number 10872 by Saham last updated on 28/Feb/17 $$\mathrm{In}\:\mathrm{a}\:\mathrm{cultural}\:\mathrm{gathering}\:\mathrm{of}\:\mathrm{400}\:\mathrm{people},\:\mathrm{there}\:\mathrm{are}\:\mathrm{270}\:\mathrm{men}\:\mathrm{and}\:\mathrm{200} \\ $$$$\mathrm{musicians}.\:\mathrm{Of}\:\mathrm{the}\:\mathrm{latter},\:\mathrm{80}\:\mathrm{are}\:\mathrm{singers}.\:\mathrm{60}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are}\:\mathrm{not}\:\:\mathrm{musicians} \\ $$$$\mathrm{and}\:\mathrm{220}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{are}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}\:\mathrm{are} \\ $$$$\mathrm{musicians}\:\mathrm{but}\:\mathrm{not}\:\mathrm{singers}.\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{150}\:\mathrm{singers}\:\mathrm{altogether}\:\mathrm{and}\: \\ $$$$\mathrm{40}\:\mathrm{men}\:\mathrm{are}\:\mathrm{both}\:\mathrm{musicians}\:\mathrm{and}\:\mathrm{singers}. \\ $$ Answered by Abdulhalim Ghadady last…

1-Show-that-x-2n-1-y-2n-1-x-y-x-2n-x-2n-1-y-xy-2n-1-y-2n-2-Show-that-x-2n-y-2n-x-y-x-2n-1-x-2n-2-y-xy-2n-

Question Number 10867 by Saham last updated on 28/Feb/17 $$\left(\mathrm{1}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}\:: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}\:+\:\mathrm{1}} \:−\:\mathrm{y}^{\mathrm{2n}\:+\:\mathrm{1}} }{\mathrm{x}\:−\:\mathrm{y}}\:=\:\mathrm{x}^{\mathrm{2n}\:} +\:\mathrm{x}^{\mathrm{2n}\:−\:\mathrm{1}} \mathrm{y}\:+\:…\:+\:\mathrm{xy}^{\mathrm{2n}\:−\:\mathrm{1}} \:+\:\mathrm{y}^{\mathrm{2n}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2n}}…

Find-all-the-solution-that-fulfilled-the-equation-below-1-1-x-x-1-1-1-2013-2013-

Question Number 10856 by Joel576 last updated on 27/Feb/17 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{that}\:\mathrm{fulfilled}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\right)^{{x}\:+\:\mathrm{1}} \:=\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2013}}\right)^{\mathrm{2013}} \\ $$ Answered by DrDaveR last updated on 12/Mar/17 $${Just}\:−\mathrm{2014}.\:{There}\:{can}\:{be}\:{no}\:{positve}\:{solution}.\:{The}\:{function}\:{is} \\ $$$${monotinically}\:{decreasing}\:\:{so}\:{there}\:{could}\:{be}\:{one}\:{negative}\:…