Question Number 75598 by A8;15: last updated on 13/Dec/19 Commented by mr W last updated on 13/Dec/19 $${please}\:{see}\:{Q}#\mathrm{74970} \\ $$ Terms of Service Privacy Policy…
Question Number 141135 by bobhans last updated on 16/May/21 $$\:\:\:\:\:\:\:{Find}\:{the}\:{minimum}\:{of}\: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{12}}{{x}}\:+\:\frac{\mathrm{18}}{{y}}\:+\:{xy}\:{for}\:{all}\: \\ $$$$\:\:\:\:\:\:{positive}\:{number}\:{x}\:\&\:{y}\:. \\ $$ Answered by mitica last updated on 16/May/21 $$\frac{\mathrm{12}}{{x}}+\frac{\mathrm{18}}{{y}}+{xy}\geqslant\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{12}}{{x}}\centerdot\frac{\mathrm{18}}{{y}}\centerdot{xy}}=\mathrm{18} \\…
Question Number 75593 by ajfour last updated on 13/Dec/19 $${u}^{\mathrm{3}} +{v}^{\mathrm{3}} ={a}\:,\:\:{s}^{\mathrm{3}} +{m}^{\mathrm{3}} ={b}\:, \\ $$$${uv}=\left({s}+{m}\right)^{\mathrm{2}} \:,\:\:{sm}=\left({u}+{v}\right)^{\mathrm{2}} \:. \\ $$$${Find}\:{u},{v},{s},{m}\:\:{in}\:{terms}\:{of}\:{a},{b}. \\ $$ Answered by behi83417@gmail.com…
Question Number 141122 by mathsuji last updated on 15/May/21 $${M}=<{a};{a}+\mathrm{1};{a}+\mathrm{2};…;{a}+{n}> \\ $$$${N}=<{a};{a}^{\mathrm{2}} ;{a}^{\mathrm{3}} ;…;{a}^{{n}} > \\ $$$${be}\:{an}\:{ideals}\:{in}\:{Q}\left[{a}\right]\:;\:{where}\:\:{n}\in\mathrm{2}\mathbb{Z} \\ $$$${M}/{N}=? \\ $$ Commented by mathsuji last…
Question Number 10045 by konen last updated on 21/Jan/17 $$\mathrm{y}\rangle\mathrm{0} \\ $$$$\frac{\mathrm{3x}^{\mathrm{2}} −\mathrm{3xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{y}^{\mathrm{2}} }=\mathrm{7}\:\Rightarrow\mathrm{max}\left(\mathrm{x}\right)=? \\ $$ Answered by mrW1 last updated on 21/Jan/17 $$\mathrm{3}{x}^{\mathrm{2}}…
Question Number 10043 by konen last updated on 21/Jan/17 $$\mid\mathrm{x}−\mathrm{3}\mid^{\mathrm{x}^{\mathrm{2}} −\mathrm{9}} =\mathrm{1}\:\:\Rightarrow\Sigma\mathrm{x}=? \\ $$ Answered by mrW1 last updated on 22/Jan/17 $${if}\:{a}^{{b}} =\mathrm{1},\:{then} \\ $$$${a}=\mathrm{1}\:{or}…
Question Number 10040 by FilupSmith last updated on 21/Jan/17 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\lfloor\mathrm{log}_{\mathrm{10}} \left({x}\right)+\mathrm{1}\rfloor\:\:\:\mathrm{give}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{digits}\:\mathrm{for}\:{x}\in\mathbb{Z} \\ $$ Answered by mrW1 last updated on 21/Jan/17 $${let}\:{x}\:{be}\:{an}\:{integer}\:{with}\:{n}\:{digits},\:{then}…
Question Number 141107 by pticantor last updated on 15/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 141098 by ajfour last updated on 15/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10021 by Tawakalitu ayo mi last updated on 21/Jan/17 $$\mathrm{Using}\:\mathrm{pascal}\:\mathrm{triangle}\:\mathrm{to}\:\mathrm{solve}:\:\left(\mathrm{0}.\mathrm{0005}\right)^{\mathrm{9}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com