Menu Close

Category: Algebra

Let-a-b-gt-0-and-a-b-2-Prove-that-1-a-3-b-3-2-2-1-ab-1-2-a-2-b-2-2-2-1-ab-1-

Question Number 144537 by loveineq last updated on 26/Jun/21 $$\mathrm{Let}\:{a},{b}>\mathrm{0}\:\mathrm{and}\:{a}+{b}\:=\:\mathrm{2}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} +{b}^{\mathrm{3}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\geqslant\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\left(\mathrm{1}−{ab}\right)\:\leqslant\:\mathrm{1} \\ $$ Answered by mnjuly1970 last updated…

Prove-by-mathematical-induction-that-n-4-4n-2-11-is-divisible-by-16-

Question Number 78948 by TawaTawa last updated on 21/Jan/20 $$\mathrm{Prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}. \\ $$$$\:\:\:\mathrm{n}^{\mathrm{4}} \:+\:\mathrm{4n}^{\mathrm{2}} \:+\:\mathrm{11}\:\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{16} \\ $$ Commented by john santu last updated on 21/Jan/20 $${let}\:{p}\left({n}\right)\:=\:{n}^{\mathrm{4}}…

Solve-for-real-positive-numbers-the-equation-z-log-3-z-log-4-z-log-5-z-log-6-

Question Number 144470 by mathdanisur last updated on 25/Jun/21 $${Solve}\:{for}\:{real}\:{positive}\:{numbers}\:{the} \\ $$$${equation}: \\ $$$$\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{3}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{4}\right)} \:+\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{5}\right)} \:=\:\boldsymbol{{z}}^{\boldsymbol{{log}}\left(\mathrm{6}\right)} \\ $$ Terms of Service Privacy Policy Contact:…

Find-all-positive-integers-n-for-which-n-2-96-is-a-perfect-square-

Question Number 13395 by Tinkutara last updated on 19/May/17 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:{n}\:\mathrm{for}\:\mathrm{which} \\ $$$${n}^{\mathrm{2}} \:+\:\mathrm{96}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}. \\ $$ Answered by ajfour last updated on 19/May/17 $$\left({n}+{m}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\mathrm{96}…

A-four-digit-number-has-the-following-properties-a-It-is-a-perfect-square-b-The-first-two-digits-are-equal-c-The-last-two-digits-are-equal-Find-all-such-numbers-

Question Number 13391 by Tinkutara last updated on 19/May/17 $$\mathrm{A}\:\mathrm{four}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{has}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{properties}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{first}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{equal} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{The}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{equal}. \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{such}\:\mathrm{numbers}. \\ $$ Answered by RasheedSindhi…

Show-that-any-circle-with-centre-2-3-cannot-pass-through-more-than-one-lattice-point-Lattice-points-are-points-in-cartesian-plane-whose-abscissa-and-ordinate-both-are-integers-

Question Number 13394 by Tinkutara last updated on 19/May/17 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{any}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{centre}\:\left(\sqrt{\mathrm{2}},\:\sqrt{\mathrm{3}}\right) \\ $$$$\mathrm{cannot}\:\mathrm{pass}\:\mathrm{through}\:\mathrm{more}\:\mathrm{than}\:\mathrm{one} \\ $$$$\mathrm{lattice}\:\mathrm{point}.\:\left[\mathrm{Lattice}\:\mathrm{points}\:\mathrm{are}\:\mathrm{points}\right. \\ $$$$\mathrm{in}\:\mathrm{cartesian}\:\mathrm{plane},\:\mathrm{whose}\:\mathrm{abscissa}\:\mathrm{and} \\ $$$$\left.\mathrm{ordinate}\:\mathrm{both}\:\mathrm{are}\:\mathrm{integers}.\right] \\ $$ Answered by mrW1 last updated…