Menu Close

Category: Algebra

find-the-value-of-x-a-4-2x-1-5-x-2-6-1-x-b-4-3-2x-1-17-3-x-7-0-

Question Number 9753 by j.masanja06@gmail.com last updated on 31/Dec/16 $${find}\:{the}\:{value}\:{of}\:{x} \\ $$$$\left({a}\right)\:\:\mathrm{4}^{\mathrm{2}{x}+\mathrm{1}} .\:\mathrm{5}^{{x}−\mathrm{2}} =\mathrm{6}^{\mathrm{1}−{x}} \\ $$$$\left({b}\right)\:\:\:\mathrm{4}\left(\mathrm{3}^{\mathrm{2}{x}+\mathrm{1}} \right)+\mathrm{17}\left(\mathrm{3}^{{x}} \right)−\mathrm{7}=\mathrm{0} \\ $$ Commented by ridwan balatif last…

a-If-z-1-i-3-prove-that-prove-that-z-14-2-13-1-i-3-b-prove-that-in-triangle-ABC-a-2-b-c-2-cos-2-A-2-b-c-2-sin-2-A-2-

Question Number 75272 by peter frank last updated on 09/Dec/19 $$\left.{a}\right)\:{If}\:{z}=\mathrm{1}+{i}\sqrt{\mathrm{3}}\:{prove}\:{that} \\ $$$${prove}\:{that} \\ $$$${z}^{\mathrm{14}} =\mathrm{2}^{\mathrm{13}} \left(−\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\right) \\ $$$$ \\ $$$$\left.{b}\right){prove}\:{that}\:{in}\:{triangle}\:{ABC} \\ $$$${a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}}…

z-5-1-z-5-205-16-z-1-z-

Question Number 140809 by mathdanisur last updated on 12/May/21 $$\boldsymbol{{z}}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{5}} }\:=\:\frac{\mathrm{205}}{\mathrm{16}}\:\centerdot\:\left(\boldsymbol{{z}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{z}}}\right) \\ $$ Answered by Rasheed.Sindhi last updated on 19/May/21 $$\boldsymbol{{z}}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{5}} }\:−\:\frac{\mathrm{205}}{\mathrm{16}}\:\centerdot\:\left(\boldsymbol{{z}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{z}}}\right)=\mathrm{0} \\…

Find-the-natural-value-of-x-that-satisfies-the-equation-1-6-7-1-7-8-1-8-9-1-x-x-1-1-12-

Question Number 140810 by mathsuji last updated on 12/May/21 $${Find}\:{the}\:{natural}\:{value}\:{of}\:\boldsymbol{{x}}\:{that} \\ $$$${satisfies}\:{the}\:{equation}: \\ $$$$\frac{\mathrm{1}}{\mathrm{6}\centerdot\mathrm{7}}\:+\:\frac{\mathrm{1}}{\mathrm{7}\centerdot\mathrm{8}}\:+\:\frac{\mathrm{1}}{\mathrm{8}\centerdot\mathrm{9}}\:+…+\:\frac{\mathrm{1}}{{x}\centerdot\left({x}+\mathrm{1}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-75267

Question Number 75267 by aliesam last updated on 09/Dec/19 Commented by mind is power last updated on 09/Dec/19 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\sqrt{\mathrm{1}+\mathrm{sin}\left(\mathrm{x}\right)}+\sqrt{\mathrm{1}−\mathrm{sin}\left(\mathrm{x}\right)}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\left(\mathrm{x}\right)}−\sqrt{\mathrm{1}−\mathrm{sin}\left(\mathrm{x}\right)}} \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)=\mathrm{2sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right) \\ $$$$\mathrm{1}\underset{−} {+}\mathrm{sin}\left(\mathrm{x}\right)=\left(\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\underset{−} {+}\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)^{\mathrm{2}}…

Question-75262

Question Number 75262 by chess1 last updated on 09/Dec/19 Commented by chess1 last updated on 09/Dec/19 $$\mathrm{Sir}\:\boldsymbol{\mathrm{mind}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{power}} \\ $$$$\mathrm{Sir}\:\boldsymbol{\mathrm{mathmax}}\:\mathrm{and}\:\boldsymbol{\mathrm{Mjs}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{W}}\:\:\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{please}} \\ $$ Commented by chess1 last…

P-intersection-point-of-bimedians-in-ABCD-convexe-quadrilateral-with-a-b-c-d-sides-e-f-diagonals-E-point-in-plane-x-y-z-t-distances-from-E-to-A-B-C-D-Prove-that-1-4-a-2-b-2-c-2-e-2-f-2-

Question Number 140785 by mathdanisur last updated on 12/May/21 $${P}-{intersection}\:{point}\:{of}\:{bimedians}\:{in} \\ $$$${ABCD}-{convexe}\:{quadrilateral}\:{with} \\ $$$${a};{b};{c};{d}-{sides},\:{e};{f}-{diagonals}, \\ $$$${E}-{point}\:{in}\:{plane},\:{x};{y};{z};{t}-{distances} \\ $$$${from},\:{E}-{to}\:{A};{B};{C};{D}.\:{Prove}\:{that}… \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{e}^{\mathrm{2}} +{f}^{\mathrm{2}} \right)+\mathrm{4}{PE}^{\mathrm{2}}…