Question Number 9367 by tawakalitu last updated on 02/Dec/16 $$\mathrm{Solve}\:\mathrm{simultaneously}. \\ $$$$\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{4xy}\:+\:\mathrm{3y}^{\mathrm{2}} \:=\:\mathrm{3}\:\:\:………\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{3x}\:+\:\mathrm{3y}\:=\:\mathrm{4}\:\:\:\:…….\:\left(\mathrm{ii}\right) \\ $$ Answered by mrW last updated…
Question Number 140442 by EnterUsername last updated on 07/May/21 $$\mathrm{If}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{2}} \mid\neq\mathrm{1}\:\mathrm{and} \\ $$$$\mid\left({z}_{\mathrm{1}} −\mathrm{2}{z}_{\mathrm{2}} \right)/\left(\mathrm{2}−{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\mid=\mathrm{1},\:\mathrm{then}\:\mid{z}_{\mathrm{1}} \mid\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\_\_\_\_\_. \\ $$ Answered by…
Question Number 74900 by chess1 last updated on 03/Dec/19 Commented by chess1 last updated on 03/Dec/19 $$\mathrm{solve}\:\mathrm{equation} \\ $$ Commented by MJS last updated on…
Question Number 140430 by ajfour last updated on 07/May/21 $$\left(\mathrm{1}+\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} +{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\left\{\left({x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:−{x}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}{x}\right)\left({x}+\mathrm{3}\right)\right\}^{\mathrm{2}} \\ $$$${Any}\:{good}\:{non}-{zero}\:{real}\:{solution} \\…
Question Number 9349 by Yozzias last updated on 02/Dec/16 $$\mathrm{We}\:\mathrm{know}\:\mathrm{that}\:\mathbb{R}=\mathbb{Q}\cup\overset{−} {\mathbb{Q}}\:\subset\:\mathbb{C}.\:\mathrm{Is}\:\mathrm{there}\: \\ $$$$\mathrm{another}\:\mathrm{set}\:\mathbb{V}\:\mathrm{such}\:\mathrm{that}\:\mathbb{C}\subset\mathbb{V}\:? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 140417 by mathsuji last updated on 07/May/21 $${if}\:{minimum}\:{value}\:{of} \\ $$$${g}\left({a};{b}\right)=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{10}{a}−\mathrm{10}{b}+\mathrm{50}}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{y}+\mathrm{20}}+ \\ $$$$+\sqrt{{a}^{\mathrm{2}} −\mathrm{14}{a}+\mathrm{74}} \\ $$$${is}\:{n}\:{and}\:{occurs}\:{at}\:{a}=\gamma\:,\:{b}=\delta,\:{the}\:{find} \\ $$$$\left({n}+\mathrm{4}\gamma+\mathrm{3}\delta\right)=? \\ $$ Answered…
Question Number 74880 by aliesam last updated on 03/Dec/19 $${solve}\:{inR} \\ $$$$\sqrt[{\mathrm{5}}]{\mid{x}+\mathrm{1}\mid}−\sqrt[{\mathrm{10}}]{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{9}}=\left(\mathrm{2}{x}−\mathrm{10}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$ Answered by mind is power last updated on 03/Dec/19…
Question Number 9342 by FilupSmith last updated on 01/Dec/16 $$\mathrm{Solve}\:\mathrm{for}\:{n} \\ $$$${n}^{\mathrm{2}} \geqslant{n}^{\mathrm{3}} −\mathrm{1} \\ $$ Answered by mrW last updated on 02/Dec/16 $$\mathrm{n}^{\mathrm{3}} −\mathrm{n}^{\mathrm{2}}…
Question Number 140407 by mnjuly1970 last updated on 07/May/21 $$\:\:\:\: \\ $$$$\:\:\:\:{prove}\:{that}\:\langle\:\mathrm{X}:=\mathbb{R}\:,\:\tau_{{e}} \:\rangle\:{is} \\ $$$$\:\:\:\:\:\:{a}\:{second}\:{topology}\:{space}\:. \\ $$$$\:\:\:\:\:\tau_{{e}} \:\:{is}\:\mathscr{E}{uclidian}\:{topology}\:{on}\:\mathbb{R}. \\ $$$$\:\:\:\mathrm{H}{int}\:::\:\:\mathcal{B}=\:\left\{\:\left({r}−\frac{\mathrm{1}}{{n}}\:,{r}+\frac{\mathrm{1}}{{n}}\right)\mid\:{r}\in\mathrm{Q}\:,\:{n}\in\mathbb{N}\right\} \\ $$$$\:\:\:{is}\:\:{a}\:{base}\:{for}\:\tau_{{e}\:} ….. \\ $$…
Question Number 9324 by uchechukwu okorie favour last updated on 30/Nov/16 $${if}\:\:{x}=\frac{{a}\left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:{make}\:{r}\:{the}\: \\ $$$${subject}\:{of}\:{the}\:{formula} \\ $$ Answered by mrW last updated on 30/Nov/16 $$\mathrm{let}\:\mathrm{k}=\frac{\mathrm{x}}{\mathrm{a}}…