Menu Close

Category: Algebra

prove-3-2-9-4-2-2-2-

Question Number 139468 by mathdanisur last updated on 27/Apr/21 $${prove}:\:\:\sqrt{\mathrm{3}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{9}+\mathrm{4}\sqrt{\mathrm{2}}}}\:=\:\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$ Answered by OlafThorendsen last updated on 27/Apr/21 $${x}\:=\:\:\sqrt{\mathrm{3}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{9}+\mathrm{4}\sqrt{\mathrm{2}}}} \\ $$$${x}\:=\:\:\sqrt{\mathrm{3}+\sqrt{\mathrm{2}}−\sqrt{\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$${x}\:=\:\:\sqrt{\mathrm{3}+\sqrt{\mathrm{2}}−\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)}…

make-t-the-subject-of-the-formular-s-ut-1-2-gt-2-3t-3-

Question Number 8352 by tawakalitu last updated on 09/Oct/16 $$\mathrm{make}\:\mathrm{t}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formular}. \\ $$$$\mathrm{s}\:=\:\mathrm{ut}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \:+\:\mathrm{3t}^{\mathrm{3}} \\ $$ Answered by fernandodantas1996 last updated on 13/Oct/16 $$\mathrm{s}\:=\:\mathrm{t}\left(\mathrm{u}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}+\mathrm{3t}^{\mathrm{2}} \right)\:\Leftrightarrow\:\mathrm{t}\:=\:\frac{\mathrm{s}}{\mathrm{u}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}\:+\:\mathrm{3t}^{\mathrm{2}} }…

What-are-necessary-and-sufficient-conditions-that-a-ib-n-is-cyclic-for-an-n-not-equal-to-0-

Question Number 8341 by Rasheed Soomro last updated on 09/Oct/16 $$\mathrm{What}\:\mathrm{are}\:\mathrm{necessary}\:\mathrm{and}\:\mathrm{sufficient}\:\mathrm{conditions} \\ $$$$\mathrm{that}\:\left(\mathrm{a}+\mathrm{ib}\right)^{\mathrm{n}} \:\mathrm{is}\:\mathrm{cyclic}\:\mathrm{for}\:\mathrm{an}\:\:\mathrm{n}\:\mathrm{not}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{0}? \\ $$ Answered by prakash jain last updated on 09/Oct/16 $$\mid{a}+{ib}\mid=\mathrm{1}\Rightarrow\sqrt{{a}^{\mathrm{2}}…

0-pi-2-log-sin-x-2-log-cos-x-2-2-cos-pi-4-x-2-dx-

Question Number 139399 by mathsuji last updated on 26/Apr/21 $$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{log}\left({sin}\left({x}/\mathrm{2}\right)\right)+{log}\left({cos}\left({x}/\mathrm{2}\right)\right)}{\:\sqrt{\mathrm{2}}\centerdot{cos}\left(\pi/\mathrm{4}−{x}/\mathrm{2}\right)}\:{dx} \\ $$ Answered by Ar Brandon last updated on 26/Apr/21 $$\mathrm{Let}\:{u}=\frac{\pi}{\mathrm{2}}−{x} \\ $$…

If-z-i-2-and-z-0-5-3i-then-the-maximum-value-of-z-0-iz-is-A-7-B-7-C-5-D-9-

Question Number 139394 by EnterUsername last updated on 26/Apr/21 $$\mathrm{If}\:\mid{z}−{i}\mid\leqslant\mathrm{2}\:\mathrm{and}\:{z}_{\mathrm{0}} =\mathrm{5}+\mathrm{3}{i},\:\mathrm{then}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mid{z}_{\mathrm{0}} +{iz}\mid\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{7}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{7}}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\:\mathrm{5}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{9} \\ $$ Answered by mr W last updated on…

Is-i-0-i-1-i-2-i-n-cyclic-for-any-value-of-n-Determine-the-smallest-such-n-if-it-exists-is-a-complex-cuberoot-of-unity-and-i-1-

Question Number 8301 by Rasheed Soomro last updated on 06/Oct/16 $$\mathrm{Is}\:\:\left\{\:\left(\omega+\mathrm{i}\right)^{\mathrm{0}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{1}} ,\:\left(\omega+\mathrm{i}\right)^{\mathrm{2}} ,\:….,\:\left(\omega+\mathrm{i}\right)^{\mathrm{n}} \:\right\} \\ $$$$\mathrm{cyclic}\:\mathrm{for}\:\mathrm{any}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n}? \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{such}\:\mathrm{n}\:\mathrm{if}\:\mathrm{it}\:\mathrm{exists}. \\ $$$$\omega\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{cuberoot}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{and} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}} \\ $$…

Show-that-one-representation-for-pi-3-14-is-pi-12cos-1-3-4-1-4-1-r-1-k-1-2r-3-2-k-2r-1-3-r-

Question Number 8277 by Yozzias last updated on 05/Oct/16 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{one}\:\mathrm{representation}\:\mathrm{for}\:\pi\approx\mathrm{3}.\mathrm{14}… \\ $$$$\mathrm{is}\:\pi=\mathrm{12cos}^{−\mathrm{1}} \left[\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} \left(\mathrm{1}+\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2r}} {\prod}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{k}\right)}{\left(\mathrm{2r}\right)!}\left(\frac{−\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{r}} \right)\right]. \\ $$$$ \\ $$ Terms of…

prove-that-are-axactly-1729-positive-integer-solutions-to-the-below-equation-4x-4-3y-3-2z-2-t-4311-

Question Number 139319 by mathsuji last updated on 25/Apr/21 $${prove}\:{that}\:{are}\:{axactly}\:\mathrm{1729}\:{positive} \\ $$$${integer}\:{solutions}\:{to}\:{the}\:{below}\:{equation} \\ $$$$\mathrm{4}{x}^{\mathrm{4}} +\mathrm{3}{y}^{\mathrm{3}} +\mathrm{2}{z}^{\mathrm{2}} +{t}=\mathrm{4311} \\ $$ Commented by Rasheed.Sindhi last updated on…