Menu Close

Category: Algebra

Question-73113

Question Number 73113 by TawaTawa last updated on 06/Nov/19 Commented by mathmax by abdo last updated on 06/Nov/19 $$\left.\mathrm{1}\right)\:{we}\:{have}\:{arg}\left({z}\right)={arg}\left(\mathrm{7}−\mathrm{3}\sqrt{\mathrm{3}}{i}\right)+{arg}\left(−\mathrm{1}−{i}\right)\left[\mathrm{2}\pi\right] \\ $$$$\mid\mathrm{7}−\mathrm{3}\sqrt{\mathrm{3}}\mid\:=\sqrt{\mathrm{49}+\mathrm{27}}=\sqrt{\mathrm{76}}\:\Rightarrow\mathrm{7}−\mathrm{3}\sqrt{\mathrm{3}}=\sqrt{\mathrm{76}}{e}^{{iarctan}\left(\frac{−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{7}}\right)} \:\Rightarrow \\ $$$${arg}\left(\mathrm{7}−\mathrm{3}\sqrt{\mathrm{3}}\right)\:=−{arctan}\left(\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{7}}\right) \\…

Question-138641

Question Number 138641 by soudo last updated on 15/Apr/21 Answered by MJS_new last updated on 16/Apr/21 $$\left.\mathrm{f}\left.\mathrm{rom}\:\mathrm{1}\right)\:\Rightarrow\:\mathrm{2}\right) \\ $$$${x}^{\mathrm{2}} \pm{xy}+{y}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +{x}^{\mathrm{2}} \pm\mathrm{2}{xy}+{y}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=…

Find-x-n-n-Z-satisfying-x-0-0-x-1-1-and-x-n-1-x-n-x-n-1-2-1-x-n-1-x-n-2-1-for-n-1-

Question Number 7532 by Yozzia last updated on 02/Sep/16 $${Find}\:{x}_{{n}} \:\left({n}\in\mathbb{Z}\right)\:{satisfying}\:{x}_{\mathrm{0}} =\mathrm{0},\:{x}_{\mathrm{1}} =\mathrm{1}\:{and} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} \sqrt{{x}_{{n}−\mathrm{1}} ^{\mathrm{2}} +\mathrm{1}}+{x}_{{n}−\mathrm{1}} \sqrt{{x}_{{n}} ^{\mathrm{2}} +\mathrm{1}}\:{for}\:{n}\geqslant\mathrm{1}. \\ $$ Commented…

prove-that-for-n-p-N-2-k-0-p-k-C-n-p-k-C-n-k-n-C-2n-1-p-1-conclude-the-value-of-k-0-n-k-C-n-k-2-

Question Number 73042 by mathmax by abdo last updated on 05/Nov/19 $${prove}\:{that}\:{for}\:\left({n},{p}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:\:\:\sum_{{k}=\mathrm{0}} ^{{p}\:} \:{k}\:{C}_{{n}} ^{{p}−{k}} \:{C}_{{n}} ^{{k}} \:={n}\:{C}_{\mathrm{2}{n}−\mathrm{1}} ^{{p}−\mathrm{1}} \\ $$$${conclude}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:\left({C}_{{n}}…

prove-that-n-p-N-N-1-k-0-p-1-k-C-n-k-1-p-C-n-1-p-2-p-q-N-2-k-0-p-C-p-q-k-C-p-q-k-p-k-2-p-C-p-q-p-

Question Number 73040 by mathmax by abdo last updated on 05/Nov/19 $${prove}\:{that}\:\:\forall\left({n},{p}\right)\in{N}^{\bigstar} ×{N} \\ $$$$\left.\mathrm{1}\right)\sum_{{k}=\mathrm{0}} ^{{p}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$$$\left.\mathrm{2}\right)\forall\left({p},{q}\right)\in{N}^{\mathrm{2}} \:\:\:\:\sum_{{k}=\mathrm{0}}…

let-U-n-n-2-if-n-even-and-U-n-n-1-2-if-n-odd-let-f-n-k-0-n-U-k-prove-that-x-y-N-2-f-x-y-f-x-y-xy-

Question Number 73039 by mathmax by abdo last updated on 05/Nov/19 $${let}\:{U}_{{n}} =\frac{{n}}{\mathrm{2}}\:{if}\:{n}\:{even}\:{and}\:{U}_{{n}} =\frac{{n}−\mathrm{1}}{\mathrm{2}}\:{if}\:{n}\:{odd}\:{let}\:{f}\left({n}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {U}_{{k}} \\ $$$${prove}\:{that}\:\forall\left({x},{y}\right)\in{N}^{\mathrm{2}} \:\:\:\:{f}\left({x}+{y}\right)−{f}\left({x}−{y}\right)={xy} \\ $$ Answered by mind is…