Menu Close

Category: Algebra

a-Z-2a-3-3a-2-3a-7-a-2-a-2-1-a-3k-1-k-Z-

Question Number 6834 by nburiburu last updated on 30/Jul/16 $${a}\in\mathbb{Z},\:\left(\mathrm{2}{a}^{\mathrm{3}} +\mathrm{3}{a}^{\mathrm{2}} −\mathrm{3}{a}+\mathrm{7}\::\:{a}^{\mathrm{2}} +{a}−\mathrm{2}\right)\neq\mathrm{1}\:\Leftrightarrow\:{a}=\mathrm{3}{k}+\mathrm{1},\:{k}\in\mathbb{Z} \\ $$ Commented by Yozzii last updated on 30/Jul/16 $${All}\:{integers}\:{can}\:{be}\:{written}\:{in}\:{one} \\ $$$${of}\:{the}\:{following}\:{forms}\:{since}…

Solve-simultaneously-1-u-1-v-1-3-equation-i-u-2-v-v-2-u-12-equation-ii-

Question Number 6824 by Tawakalitu. last updated on 30/Jul/16 $${Solve}\:{simultaneously} \\ $$$$\frac{\mathrm{1}}{{u}}\:+\:\frac{\mathrm{1}}{{v}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:……….\:{equation}\:\left({i}\right) \\ $$$$\frac{{u}^{\mathrm{2}} }{{v}}\:+\:\frac{{v}^{\mathrm{2}} }{{u}}\:=\:\mathrm{12}\:\:\:\:\:\:……..\:{equation}\:\left({ii}\right) \\ $$ Commented by sou1618 last updated on 30/Jul/16…

let-Q-1-tan-3pi-8-tan-pi-10-1-tan-pi-8-tan-pi-10-prove-that-Q-1-Q-1-7-3-5-85-38-5-

Question Number 72332 by aliesam last updated on 27/Oct/19 $${let}\:{Q}=\frac{\mathrm{1}+{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:.\:{tan}\left(\frac{\pi}{\mathrm{10}}\right)}{\mathrm{1}−{tan}\left(\frac{\pi}{\mathrm{8}}\right).{tan}\left(\frac{\pi}{\mathrm{10}}\right)} \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\: \\ $$$$\frac{{Q}−\mathrm{1}}{{Q}+\mathrm{1}}=\sqrt{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}−\sqrt{\mathrm{85}−\mathrm{38}\sqrt{\mathrm{5}}}} \\ $$$$ \\ $$ Answered by mind…

What-is-the-probability-that-3-customers-waiting-in-bank-will-be-served-in-sequence-of-their-arrival-

Question Number 6799 by Tawakalitu. last updated on 27/Jul/16 $${What}\:{is}\:{the}\:{probability}\:{that}\:\mathrm{3}\:{customers}\:{waiting}\:{in}\:{bank}\:{will}\: \\ $$$${be}\:{served}\:{in}\:{sequence}\:{of}\:{their}\:{arrival}. \\ $$ Commented by Yozzii last updated on 27/Jul/16 $${sequence}\:{of}\:{arrival}\:{is}\:{one}\:{out}\:{of}\:\mathrm{3}!=\mathrm{6}. \\ $$$$\Rightarrow\:{experimental}\:{probability}=\frac{\mathrm{1}}{\mathrm{6}}. \\…