Menu Close

Category: Algebra

3-1-3-5-7-2n-1-

Question Number 200718 by hardmath last updated on 22/Nov/23 $$\mathrm{3}. \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+…+\left(\mathrm{2}{n}+\mathrm{1}\right)\:=\:? \\ $$ Answered by AST last updated on 22/Nov/23 $$\mathrm{2}+\mathrm{4}+..+\mathrm{2}{n}=\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}\right)={n}^{\mathrm{2}} +{n} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{2}{n}+\mathrm{1}=\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)…

Question-200594

Question Number 200594 by cherokeesay last updated on 20/Nov/23 Answered by Frix last updated on 21/Nov/23 $$\mathrm{Obviously}\:{x}=\mathrm{3}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}. \\ $$$$\mathrm{Then}\:\mathrm{you}\:\mathrm{must}\:\mathrm{approximate}…\:\mathrm{I}\:\mathrm{found} \\ $$$${x}\approx.\mathrm{211793616} \\ $$$${x}\approx−\mathrm{2}.\mathrm{80610974} \\ $$…

Question-200589

Question Number 200589 by Ikbal last updated on 20/Nov/23 Answered by Frix last updated on 20/Nov/23 $$\mathrm{First}\:\mathrm{try}\:\mathrm{factors}\:\mathrm{of}\:\pm\mathrm{40}\:\Rightarrow \\ $$$${x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{42}{x}−\mathrm{40}= \\ $$$$=\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{10}\right) \\…

Find-the-sum-of-the-fifth-powers-of-the-roots-of-x-3-2x-2-x-1-0-by-applying-synthetic-division-

Question Number 200465 by faysal last updated on 19/Nov/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{fifth}\:\mathrm{powers}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}=\mathrm{0}\:\mathrm{by} \\ $$$$\mathrm{applying}\:\mathrm{synthetic}\:\mathrm{division} \\ $$ Commented by mr W last updated on…

Find-the-cardano-s-solution-of-the-equation-28x-3-9x-2-1-0-

Question Number 200460 by faysal last updated on 19/Nov/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{cardano}'\mathrm{s}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{equation}\:\mathrm{28x}^{\mathrm{3}} −\mathrm{9x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ Answered by Frix last updated on 19/Nov/23 $$\mathrm{28}{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}}…