Menu Close

Category: Algebra

Question-136505

Question Number 136505 by rexford last updated on 22/Mar/21 Answered by Dwaipayan Shikari last updated on 22/Mar/21 $${Assuming}\:{soda}\:{was}\:{x}\:{litre}\:{in}\:{quantity} \\ $$$${Your}\:{consumption}=\frac{{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}^{\mathrm{3}} }+\frac{{x}}{\mathrm{2}^{\mathrm{5}} }+…={x}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{32}}+…\right) \\ $$$$=\frac{\frac{{x}}{\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}=\frac{\mathrm{2}{x}}{\mathrm{3}} \\…

1-2-2-4-3-8-6-16-11-32-20-64-37-128-

Question Number 136489 by liberty last updated on 22/Mar/21 $$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{6}}{\mathrm{16}}+\frac{\mathrm{11}}{\mathrm{32}}+\frac{\mathrm{20}}{\mathrm{64}}+\frac{\mathrm{37}}{\mathrm{128}}+…\:=? \\ $$ Answered by Olaf last updated on 22/Mar/21 $$\mathrm{Tribonacci}\:\mathrm{numbers}\:: \\ $$$$\mathrm{T}_{\mathrm{0}} \:=\:\mathrm{0},\:\mathrm{T}_{\mathrm{1}} \:=\:\mathrm{1},\:\mathrm{T}_{\mathrm{2}} \:=\:\mathrm{0}…

5-1-x-1-x-6x-8-1-x-2-

Question Number 136494 by liberty last updated on 22/Mar/21 $$\mathrm{5}\left(\sqrt{\mathrm{1}−{x}}\:+\sqrt{\mathrm{1}+{x}}\:\right)=\:\mathrm{6}{x}\:+\:\mathrm{8}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$ Answered by MJS_new last updated on 22/Mar/21 $$\mathrm{I}\:\mathrm{get}\:\mathrm{2}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{24}}{\mathrm{25}} \\…

How-do-we-prove-the-area-of-a-square-rectangle-is-at-its-maximum-when-both-sides-are-equal-So-if-we-have-a-rectangle-of-sides-a-and-b-how-do-we-show-its-maximized-when-a-b-

Question Number 5414 by FilupSmith last updated on 14/May/16 $$\mathrm{How}\:\mathrm{do}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}/\mathrm{rectangle} \\ $$$$\mathrm{is}\:\mathrm{at}\:\mathrm{its}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{equal}. \\ $$$$ \\ $$$$\mathrm{So},\:\mathrm{if}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{of}\:\mathrm{sides}\:{a}\:\mathrm{and}\:{b}, \\ $$$$\mathrm{how}\:\mathrm{do}\:\mathrm{we}\:\mathrm{show}\:\mathrm{its}\:\mathrm{maximized}\:\mathrm{when}\:{a}={b}? \\ $$ Answered by 123456 last updated…

Question-136475

Question Number 136475 by EDWIN88 last updated on 22/Mar/21 Commented by EDWIN88 last updated on 22/Mar/21 $$\mathrm{Use}\:\mathrm{the}\:\mathrm{fact}\:\mathrm{that}\:\mathrm{csc}\:\mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{x}}{\mathrm{6}}+\frac{\mathrm{7x}^{\mathrm{3}} }{\mathrm{360}}+\frac{\mathrm{31x}^{\mathrm{5}} }{\mathrm{15120}}+…\:\mathrm{for}\:\mid\mathrm{x}\mid\:<\:\pi\:\mathrm{to} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{for} \\ $$$$\mathrm{2}\:\mathrm{csc}\:\left(\mathrm{2x}\right)\:\left[\:\mathrm{for}\:\mid\mathrm{x}\mid\:<\:\frac{\pi}{\mathrm{2}}\:\mathrm{and}\:\mathrm{thus}\:\mathrm{for}\:\mathrm{ln}\:\left(\mathrm{tan}\:\mathrm{x}\right).\right. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{ln}\:\mid\mathrm{x}\mid\:+\frac{\mathrm{x}^{\mathrm{2}}…

i-

Question Number 70920 by TawaTawa last updated on 09/Oct/19 $$\mathrm{i}\:!\:\:=\:\:? \\ $$ Commented by prakash jain last updated on 10/Oct/19 $${i}!=\Gamma\left(\mathrm{1}+{i}\right) \\ $$$$\mathrm{where}\:{i}=\sqrt{−\mathrm{1}} \\ $$…

S-k-0-3k-2-2k-3-2-k-0-1-2-3k-2-k-3-1-k-0-1-2-1-k-1-2k-1-k-2-k-1-I-dont-know-how-to-continue-Please-Help-

Question Number 136408 by nimnim last updated on 21/Mar/21 $$\:\:\:\:\:\:{S}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{3}{k}^{\mathrm{2}} }{\mathrm{2}{k}^{\mathrm{3}} +\mathrm{2}}\:\:=? \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}{k}^{\mathrm{2}} }{{k}^{\mathrm{3}} +\mathrm{1}}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{{k}+\mathrm{1}}+\frac{\mathrm{2}{k}−\mathrm{1}}{{k}^{\mathrm{2}} −{k}+\mathrm{1}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:{I}\:{dont}\:{know}\:{how}\:{to}\:{continue}…{Please}\:{Help}.…