Menu Close

Category: Algebra

1-y-tgx-ctgx-y-2-y-1-x-2-arctgx-y-3-y-cos-4-x-y-4-x-2t-y-3t-2-5t-x-y-

Question Number 201764 by hardmath last updated on 11/Dec/23 $$\mathrm{1}.\:\mathrm{y}\:=\:\mathrm{tgx}\:−\:\mathrm{ctgx}\:\:\rightarrow\:\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{2}.\:\mathrm{y}\:=\:\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{arctgx}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{3}.\:\mathrm{y}\:=\:\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:\rightarrow\:\mathrm{y}^{'} \:=\:? \\ $$$$\mathrm{4}.\:\begin{cases}{\mathrm{x}\:=\:\mathrm{2t}}\\{\mathrm{y}\:=\:\mathrm{3t}^{\mathrm{2}} \:−\:\mathrm{5t}}\end{cases}\:\:\:\rightarrow\:\:\:\mathrm{x}^{'} \:,\:\mathrm{y}^{'} \:=\:? \\…

cos-2-4x-sin-2-4x-0-25-for-equation-0-90-how-many-roots-are-there-in-the-piece-

Question Number 201728 by hardmath last updated on 11/Dec/23 $$\mathrm{cos}^{\mathrm{2}} \:\mathrm{4x}\:\centerdot\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{4x}\:=\:\mathrm{0},\mathrm{25}\:\mathrm{for}\:\mathrm{equation} \\ $$$$\left[\mathrm{0};\mathrm{90}\right]\:\mathrm{how}\:\mathrm{many}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{piece}? \\ $$ Answered by esmaeil last updated on 11/Dec/23…

Find-1-cos3x-cosx-dx-2-3-x-sinx-dx-3-0-1-x-e-x-dx-4-1-e-ln-2-x-dx-

Question Number 201763 by hardmath last updated on 11/Dec/23 $$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\int\:\mathrm{cos3x}\:\mathrm{cosx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{2}.\:\int\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:\mathrm{sinx}\:\mathrm{dx}\:=\:? \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \:\mathrm{x}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$$$\mathrm{4}.\:\int_{\mathrm{1}} ^{\:\boldsymbol{\mathrm{e}}} \:\mathrm{ln}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}\:=\:?…

Question-201689

Question Number 201689 by cherokeesay last updated on 10/Dec/23 Answered by witcher3 last updated on 10/Dec/23 $$\mathrm{x}^{\mathrm{3}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{12x}−\mathrm{32}=\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{3}} −\mathrm{24} \\ $$$$\mathrm{x}−\mathrm{2}=\mathrm{y} \\ $$$$\Leftrightarrow\sqrt[{\mathrm{3}}]{\mathrm{y}+\mathrm{24}}=\mathrm{y}^{\mathrm{3}} −\mathrm{24}…

Question-201679

Question Number 201679 by cherokeesay last updated on 10/Dec/23 Answered by Rasheed.Sindhi last updated on 10/Dec/23 $$\sqrt[{\mathrm{6}}]{\mathrm{1}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:+\sqrt[{\mathrm{6}}]{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:−\mathrm{1}}\:=\mathrm{1} \\ $$$${a}+{b}=\mathrm{1}\Rightarrow{b}=\mathrm{1}−{a} \\ $$$${a}^{\mathrm{6}} +{b}^{\mathrm{6}} =\mathrm{1}−\sqrt{{x}^{\mathrm{2}}…

x-y-z-R-xy-yz-zx-3-x-y-z-5-max-z-

Question Number 201613 by hardmath last updated on 09/Dec/23 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{yz}\:+\:\mathrm{zx}\:=\:\mathrm{3}}\\{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{5}}\end{cases}\:\:\:\:\:\rightarrow\:\:\:\:\mathrm{max}\left(\boldsymbol{\mathrm{z}}\right)\:=\:? \\ $$ Answered by aleks041103 last updated on 09/Dec/23 $${x}+{y}+{z}=\mathrm{5}\Rightarrow{z}=\mathrm{5}−{x}−{y} \\ $$$$\Rightarrow{xy}+\left({x}+{y}\right)\left(\mathrm{5}−\left({x}+{y}\right)\right)=\mathrm{3} \\…

x-y-z-R-a-b-c-gt-0-prove-that-x-2-a-y-2-b-z-2-c-x-y-z-2-a-b-c-

Question Number 201615 by hardmath last updated on 09/Dec/23 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{c}}\:\geqslant\:\frac{\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} }{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$ Answered by AST…