Menu Close

Category: Algebra

Prove-that-a-1-a-2-a-n-n-a-1-2-a-2-2-a-n-2-n-with-equality-holding-iff-a-1-a-2-a-n-

Question Number 4719 by prakash jain last updated on 29/Feb/16 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}} }{{n}}\leqslant\sqrt{\frac{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +…+{a}_{{n}} ^{\mathrm{2}} }{{n}}} \\ $$$$\mathrm{with}\:\mathrm{equality}\:\mathrm{holding}\:\mathrm{iff}\:{a}_{\mathrm{1}} ={a}_{\mathrm{2}}…

Prove-or-counterexample-that-if-a-finite-number-of-terms-of-a-series-are-given-then-a-infinite-number-of-formulas-for-n-th-term-exists-which-satisfy-the-given-finite-number-of-terms-For-example-3

Question Number 4720 by prakash jain last updated on 29/Feb/16 $$\mathrm{Prove}\:\mathrm{or}\:\mathrm{counterexample}\:\mathrm{that}\:\mathrm{if}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{number}\: \\ $$$$\mathrm{of}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{series}\:\mathrm{are}\:\mathrm{given}\:\mathrm{then}\:\mathrm{a}\:\mathrm{infinite}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{formulas}\:\mathrm{for}\:{n}^{{th}} \:\mathrm{term}\:\mathrm{exists}\:\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{given}\:\mathrm{finite}\:\mathrm{number}\:\mathrm{of}\:\mathrm{terms}. \\ $$$$\mathrm{For}\:\mathrm{example} \\ $$$$\mathrm{33},\mathrm{9},\mathrm{33},\mathrm{44},? \\ $$$$\mathrm{4}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{given}\:\mathrm{if}\:{a}_{{n}} ={f}\left({n}\right)\:\mathrm{then}\:\mathrm{there}\:\mathrm{are}…

Question-135786

Question Number 135786 by JulioCesar last updated on 16/Mar/21 Commented by Ar Brandon last updated on 16/Mar/21 $$\mathrm{You}\:\mathrm{mean}\: \\ $$$$\mathrm{H}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{9}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}\:??? \\ $$…

Silly-question-which-is-correct-ln-n-ab-ln-n-ln-ab-ln-n-ln-a-ln-b-or-ln-n-ab-ln-n-ln-ab-ln-n-ln-a-ln-b-

Question Number 4653 by FilupSmith last updated on 18/Feb/16 $$\mathrm{Silly}\:\mathrm{question} \\ $$$${which}\:{is}\:{correct}??? \\ $$$$ \\ $$$$\mathrm{ln}\left(\frac{{n}}{{ab}}\right)=\mathrm{ln}\left({n}\right)−\mathrm{ln}\left({ab}\right)=\mathrm{ln}\left({n}\right)−\mathrm{ln}\left({a}\right)+\mathrm{ln}\left({b}\right) \\ $$$${or} \\ $$$$\mathrm{ln}\left(\frac{{n}}{{ab}}\right)=\mathrm{ln}\left({n}\right)−\mathrm{ln}\left({ab}\right)=\mathrm{ln}\left({n}\right)−\mathrm{ln}\left({a}\right)−\mathrm{ln}\left({b}\right) \\ $$ Answered by 123456…

Question-70162

Question Number 70162 by TawaTawa last updated on 01/Oct/19 Answered by mind is power last updated on 01/Oct/19 $$\Rightarrow\mathrm{1}=\left({a}+{b}\right)\left(\frac{{sin}^{\mathrm{4}} \left(\theta\right)}{{a}}+\frac{{cos}^{\mathrm{4}} \left(\theta\right)}{{b}}\right)…{S} \\ $$$$\Rightarrow\frac{{b}}{{a}}{Sin}^{\mathrm{4}} \left(\theta\right)+\frac{{a}}{{b}}{cos}^{\mathrm{4}} \left(\theta\right)+{cos}^{\mathrm{4}}…