Menu Close

Category: Algebra

Question-70161

Question Number 70161 by TawaTawa last updated on 01/Oct/19 Answered by mind is power last updated on 01/Oct/19 $${let}\:{a}=\sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}\:\:{b}=\sqrt{\sqrt{\mathrm{5}}−\mathrm{2}} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${ab}=\mathrm{1}…

if-m-3-2p-3-3mn-a-3-b-3-p-3-and-a-2-b-2-n-then-prove-that-a-b-m-

Question Number 70103 by Shamim last updated on 01/Oct/19 $$\mathrm{if}\:\mathrm{m}^{\mathrm{3}} +\mathrm{2p}^{\mathrm{3}} =\mathrm{3mn},\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} =\mathrm{p}^{\mathrm{3}} \:\mathrm{and} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{n}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{a}+\mathrm{b}=\mathrm{m}. \\ $$ Answered by mind is…

Prove-i-i-e-pi-2-i-2-1-

Question Number 4556 by FilupSmith last updated on 07/Feb/16 $$\mathrm{Prove}\:{i}^{{i}} ={e}^{−\pi/\mathrm{2}} ,\:\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$ Answered by Yozzii last updated on 07/Feb/16 $${i}=\mathrm{0}+{i}×\mathrm{1}={cos}\mathrm{0}.\mathrm{5}\pi+{isin}\mathrm{0}.\mathrm{5}={e}^{\mathrm{0}.\mathrm{5}\pi{i}} \\ $$$$\therefore{i}^{{i}}…

Two-tractor-working-together-have-plowed-the-field-for-48-hours-If-half-of-the-field-is-plowed-by-one-of-them-and-then-the-remaining-half-to-the-other-the-work-would-be-carried-out-100-hours-Ho

Question Number 4539 by love math last updated on 05/Feb/16 $${Two}\:{tractor},\:{working}\:{together},\: \\ $$$${have}\:{plowed}\:{the}\:{field}\:{for}\:\mathrm{48}\:{hours}. \\ $$$${If}\:{half}\:{of}\:{the}\:{field}\:{is}\:{plowed}\:{by}\: \\ $$$${one}\:{of}\:{them}\:{and}\:{then}\:{the}\:{remaining} \\ $$$${half}\:{to}\:{the}\:{other},\:{the}\:{work}\:{would} \\ $$$${be}\:{carried}\:{out}\:\mathrm{100}\:{hours}.\:{How}\:{many} \\ $$$${hours}\:{to}\:{plow}\:{the}\:{field}\:{if}\:{every}\:{tractor} \\ $$$${working}\:{separately}?…

If-a-2-b-2-c-2-1-a-3-1-b-3-1-c-3-a-3-b-3-c-3-than-prove-that-a-b-c-Successive-Proportional-

Question Number 70040 by Shamim last updated on 30/Sep/19 $$\mathrm{If},\:\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{3}} }\right)=\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \:\mathrm{than} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{Successive}\:\mathrm{Proportional}. \\ $$ Commented by…