Question Number 3588 by prakash jain last updated on 16/Dec/15 $$\mathrm{Three}\:\mathrm{point}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{number}\:\mathrm{line}\:\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{C}. \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{quadractic}\:\mathrm{equation} \\ $$$${x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0} \\ $$$${a}=\mathrm{Length}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{AB} \\ $$$${b}=\mathrm{Length}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{BC} \\ $$$$\mathrm{Give}\:\mathrm{construction}\:\mathrm{steps}\:\mathrm{to}\:\mathrm{identify}\:\mathrm{a}\:\mathrm{points} \\…
Question Number 3565 by Yozzii last updated on 15/Dec/15 $${Define}\:{the}\:{sequence}\:\left\{{a}_{{n}} \right\}\:{by}\:{the} \\ $$$${recurrence}\:{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{{n}+\mathrm{1}} ={pa}_{{n}} +{qa}_{{n}−\mathrm{1}} \:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$${where}\:{p},{q}\in\mathbb{C}−\left\{\mathrm{0}\right\}\:{and}\: \\ $$$${a}_{\mathrm{0}} =\alpha\:,\:{a}_{\mathrm{1}} =\beta\:\: \\…
Question Number 3564 by Yozzii last updated on 15/Dec/15 $${Test}\:{for}\:{convergence}: \\ $$$$\left(\mathrm{1}\right)\:\underset{{n}=\mathrm{10}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{\mathrm{ln}\left(\mathrm{ln}{n}\right)} }{{n}\mathrm{ln}{n}} \\ $$$$\left(\mathrm{2}\right)\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left(\mathrm{ln}{n}\right)^{\mathrm{p}} }\:\left(\mathrm{two}\:\mathrm{cases}\:\mathrm{of}\:\mathrm{p}\:\mathrm{to}\:\mathrm{look}\:\mathrm{at}\right) \\ $$$$\left(\mathrm{3}\right)\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \sqrt{{n}}}{\mathrm{ln}{n}}…
Question Number 134627 by bobhans last updated on 05/Mar/21 $$\mathcal{ALGEBRA} \\ $$If Bobby walks to school at 50m/min. He will be late for 3 minutes.…
Question Number 3548 by Yozzii last updated on 15/Dec/15 $${Find}\:{all}\:{solutions}\:{x}\:{to}\:{the}\:{equation} \\ $$$${x}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0}\:{where}\:{b},{c},{d}\:{are}\: \\ $$$${constants}\:{from}\:\mathbb{C}.\: \\ $$$$ \\ $$ Answered by RasheedSindhi last updated…
Question Number 69072 by TawaTawa last updated on 19/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 69064 by Sayantan chakraborty last updated on 18/Sep/19 Commented by Sayantan chakraborty last updated on 18/Sep/19 $$\mathrm{PLEASE}\:\mathrm{HELP} \\ $$ Commented by Sayantan chakraborty…
Question Number 134571 by liberty last updated on 05/Mar/21 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{sequence}\:\underset{\mathrm{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{ln}\:\mathrm{n}\right)^{\mathrm{100}} } \\ $$$$\mathrm{divergent}\:\mathrm{or}\:\mathrm{convergent}\: \\ $$ Answered by mathmax by abdo last updated on…
Question Number 69020 by mhmd last updated on 17/Sep/19 $${if}\:{z}=\left(\mathrm{2}+\mathrm{3}{i}/\mathrm{3}−\sqrt{−\mathrm{4}}\right)^{\mathrm{17}} \:{by}\:{using}\:{demover}\:{find}\:\left({z}−\mathrm{1}\right)^{−\mathrm{5}} \: \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$ Commented by MJS last updated on 17/Sep/19 $$\mathrm{please}\:\mathrm{set}\:\left(\right)\:\mathrm{correctly} \\…
Question Number 3467 by Rasheed Soomro last updated on 13/Dec/15 $${Prove}\:{that}\:{in}\:{general}\:{trisection}\:{of}\:{an} \\ $$$${angle}\:{is}\:{impossible}\:{with}\:{only}\:{ruler} \\ $$$${and}\:{compass}. \\ $$ Commented by prakash jain last updated on 13/Dec/15…