Menu Close

Category: Algebra

Three-point-are-drawn-on-a-straight-number-line-A-B-and-C-Consider-a-quadractic-equation-x-2-ax-b-0-a-Length-of-line-segment-AB-b-Length-of-line-segment-BC-Give-construction-steps-to-identify-a-poin

Question Number 3588 by prakash jain last updated on 16/Dec/15 $$\mathrm{Three}\:\mathrm{point}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{on}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{number}\:\mathrm{line}\:\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{C}. \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{quadractic}\:\mathrm{equation} \\ $$$${x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0} \\ $$$${a}=\mathrm{Length}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{AB} \\ $$$${b}=\mathrm{Length}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{BC} \\ $$$$\mathrm{Give}\:\mathrm{construction}\:\mathrm{steps}\:\mathrm{to}\:\mathrm{identify}\:\mathrm{a}\:\mathrm{points} \\…

Define-the-sequence-a-n-by-the-recurrence-equation-a-n-1-pa-n-qa-n-1-n-1-where-p-q-C-0-and-a-0-a-1-C-Find-a-n-in-terms-of-n-

Question Number 3565 by Yozzii last updated on 15/Dec/15 $${Define}\:{the}\:{sequence}\:\left\{{a}_{{n}} \right\}\:{by}\:{the} \\ $$$${recurrence}\:{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{{n}+\mathrm{1}} ={pa}_{{n}} +{qa}_{{n}−\mathrm{1}} \:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$${where}\:{p},{q}\in\mathbb{C}−\left\{\mathrm{0}\right\}\:{and}\: \\ $$$${a}_{\mathrm{0}} =\alpha\:,\:{a}_{\mathrm{1}} =\beta\:\: \\…

Test-for-convergence-1-n-10-2-ln-lnn-nlnn-2-n-2-1-n-lnn-p-two-cases-of-p-to-look-at-3-n-2-1-n-n-lnn-4-n-1-10-n-n-2n-1-5-n-1-

Question Number 3564 by Yozzii last updated on 15/Dec/15 $${Test}\:{for}\:{convergence}: \\ $$$$\left(\mathrm{1}\right)\:\underset{{n}=\mathrm{10}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{\mathrm{ln}\left(\mathrm{ln}{n}\right)} }{{n}\mathrm{ln}{n}} \\ $$$$\left(\mathrm{2}\right)\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left(\mathrm{ln}{n}\right)^{\mathrm{p}} }\:\left(\mathrm{two}\:\mathrm{cases}\:\mathrm{of}\:\mathrm{p}\:\mathrm{to}\:\mathrm{look}\:\mathrm{at}\right) \\ $$$$\left(\mathrm{3}\right)\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \sqrt{{n}}}{\mathrm{ln}{n}}…

if-z-2-3i-3-4-17-by-using-demover-find-z-1-5-pleas-sir-help-me-

Question Number 69020 by mhmd last updated on 17/Sep/19 $${if}\:{z}=\left(\mathrm{2}+\mathrm{3}{i}/\mathrm{3}−\sqrt{−\mathrm{4}}\right)^{\mathrm{17}} \:{by}\:{using}\:{demover}\:{find}\:\left({z}−\mathrm{1}\right)^{−\mathrm{5}} \: \\ $$$${pleas}\:{sir}\:{help}\:{me}\:? \\ $$ Commented by MJS last updated on 17/Sep/19 $$\mathrm{please}\:\mathrm{set}\:\left(\right)\:\mathrm{correctly} \\…