Menu Close

Category: Algebra

Question-200336

Question Number 200336 by faysal last updated on 17/Nov/23 Answered by cortano12 last updated on 17/Nov/23 $$\:\:\begin{array}{|c|c|c|}{}&\hline{\mathrm{1}}&\hline{\mathrm{2}}&\hline{−\mathrm{3}}&\hline{\mathrm{5}}&\hline{−\mathrm{2}}&\hline{\mathrm{3}}\\{\mathrm{x}=\mathrm{2}}&\hline{\ast}&\hline{\mathrm{2}}&\hline{\mathrm{8}}&\hline{\mathrm{10}}&\hline{\mathrm{30}}&\hline{\mathrm{56}}\\{}&\hline{\mathrm{1}}&\hline{\mathrm{4}}&\hline{\mathrm{5}}&\hline{\mathrm{15}}&\hline{\mathrm{28}}&\hline{\mathrm{59}}\\\hline\end{array} \\ $$$$\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{59} \\ $$$$\mathrm{the}\:\mathrm{quotient}\:\mathrm{is}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{2}} +\mathrm{15x}+\mathrm{28} \\…

2-x-3-x-6-x-9-x-find-x-

Question Number 200330 by hardmath last updated on 17/Nov/23 $$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\:\sqrt{\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{find}:\:\:\:\mathrm{x}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 17/Nov/23…

Question-200242

Question Number 200242 by cherokeesay last updated on 16/Nov/23 Answered by cortano12 last updated on 17/Nov/23 $$\:\frac{\left({ab}+{c}\right){x}}{{b}−\frac{{c}}{{a}}\:}\:−\frac{\left({ab}−{c}\right){x}}{{b}+\frac{{c}}{{a}}}\:=\:\frac{{ab}−{c}}{{b}+\frac{{c}}{{a}}}\:−\frac{{ab}+{c}}{{b}−\frac{{c}}{{a}}} \\ $$$$\:\frac{{ax}\left({ab}+{c}\right)}{{ab}−{c}}\:−\frac{{ax}\left({ab}−{c}\right)}{{ab}+{c}}\:=\:\frac{{a}\left({ab}−{c}\right)}{{ab}+{c}}\:−\frac{{a}\left({ab}+{c}\right)}{{ab}−{c}} \\ $$$$\:\:\frac{{x}\left({ab}+{c}\right)}{{ab}−{c}}\:−\frac{{x}\left({ab}−{c}\right)}{{ab}+{c}}\:=\:\frac{{ab}−{c}}{{ab}+{c}}−\frac{{ab}+{c}}{{ab}−{c}} \\ $$$$\:\frac{\left({ab}+{c}\right)\left({x}+\mathrm{1}\right)}{{ab}−{c}}\:=\:\frac{\left({ab}−{c}\right)\left({x}+\mathrm{1}\right)}{{ab}+{c}} \\ $$$$\:\left({ab}+{c}\right)^{\mathrm{2}}…

Question-200302

Question Number 200302 by Calculusboy last updated on 16/Nov/23 Answered by Rasheed.Sindhi last updated on 18/Nov/23 $$\sqrt{{a}+{bx}}\:+\sqrt{{b}+{cx}}\:+\sqrt{{c}+{ax}}\:\:=\sqrt{{b}−{ax}}\:+\sqrt{{c}−{bx}}\:+\sqrt{{a}−{cx}}\: \\ $$$${a}+{bx}\geqslant\mathrm{0}\:\wedge\:{b}+{cx}\geqslant\mathrm{0}\:\wedge\:{c}+{ax}\geqslant\mathrm{0} \\ $$$$\left({a}+{b}+{c}\right)+\left({a}+{b}+{c}\right){x}\geqslant\mathrm{0}\Rightarrow{x}\geqslant−\frac{{a}+{b}+{c}}{{a}+{b}+{c}}=−\mathrm{1} \\ $$$$\begin{array}{|c|}{{x}\geqslant−\mathrm{1}}\\\hline\end{array} \\ $$$${b}−{ax}\geqslant\mathrm{0}\:\wedge\:{c}−{bx}\geqslant\mathrm{0}\:\wedge\:{a}−{cx}\geqslant\mathrm{0}…

Question-200186

Question Number 200186 by Calculusboy last updated on 15/Nov/23 Answered by ajfour last updated on 15/Nov/23 $$\frac{{y}}{{x}}={p}\:,\:\frac{{z}}{{y}}={q}\:,\:\frac{{x}}{{z}}={r}\:=\frac{\mathrm{1}}{{pq}} \\ $$$$\mathrm{1}+{p}+{p}^{\mathrm{2}} =\left(\mathrm{2}+{p}\right)\left(\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}/\mathrm{3}} \\ $$$$\mathrm{1}+{q}+{q}^{\mathrm{2}} =\left(\mathrm{2}+{q}\right)\left(\frac{\mathrm{1}}{{p}}\right)^{\mathrm{2}/\mathrm{3}} \\ $$$$\mathrm{1}+{r}+{r}^{\mathrm{2}}…

If-f-x-2-x-86-and-g-x-3x-2-x-4-Then-find-g-f-1-g-14-

Question Number 200168 by hardmath last updated on 15/Nov/23 $$\mathrm{If}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{86}\:\:\mathrm{and}\:\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{x}\:−\:\mathrm{4} \\ $$$$\mathrm{Then}\:\mathrm{find}:\:\:\mathrm{g}\left[\mathrm{f}^{−\mathrm{1}} \left(\mathrm{g}\left(\mathrm{14}\right)\right)\right]\:=\:? \\ $$ Commented by jazeee last updated on 15/Nov/23 $$…

Rationalise-the-deniminator-of-the-following-fraction-1-6-3-2-1-

Question Number 200169 by hardmath last updated on 15/Nov/23 $$\mathrm{Rationalise}\:\mathrm{the}\:\mathrm{deniminator}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{fraction}: \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}\:−\:\sqrt{\mathrm{3}}\:+\:\sqrt{\mathrm{2}}\:+\:\mathrm{1}}\:=\:? \\ $$ Answered by Sutrisno last updated on 15/Nov/23 $$\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}+\mathrm{1}}×\frac{\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}\right)−\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}\right)−\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)} \\…