Menu Close

Category: Algebra

Question-133664

Question Number 133664 by shaker last updated on 23/Feb/21 Answered by liberty last updated on 23/Feb/21 $$\mathrm{partial}\:\mathrm{fraction} \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)}\:=\:\frac{\mathrm{A}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{B}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{Cx}+\mathrm{D}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Leftrightarrow\:\mathrm{1}=\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}}…

Question-68122

Question Number 68122 by TawaTawa last updated on 05/Sep/19 Commented by TawaTawa last updated on 05/Sep/19 $$\mathrm{Please}\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{workings}\:\mathrm{here}.\:\:\mathrm{Help}\:\mathrm{me}\:\mathrm{explain}\:\mathrm{please} \\ $$ Answered by mind is power last…

hi-everybody-how-to-prove-that-is-an-irrational-number-

Question Number 133653 by greg_ed last updated on 23/Feb/21 $$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\pi}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{irrational}}\:\boldsymbol{\mathrm{number}}\:??? \\ $$ Answered by Dwaipayan Shikari last updated on 23/Feb/21 $$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{11}}+…=\frac{\pi}{\mathrm{4}} \\ $$$${As}\:{It}\:{is}\:{an}\:{Infinte}\:{series}\:{so}\:{it}\:{can}\:{never}\:{be}\:{rational}…

For-a-function-y-f-x-inflection-points-stationary-points-are-when-df-dx-0-For-a-function-z-f-x-y-can-you-find-these-points-through-a-similar-method-Is-it-something-like-f-x-0-and-f-

Question Number 2548 by Filup last updated on 22/Nov/15 $$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{y}={f}\left({x}\right), \\ $$$$\mathrm{inflection}\:\mathrm{points}/\mathrm{stationary}\:\mathrm{points}\:\mathrm{are} \\ $$$$\mathrm{when}\:\:\frac{{df}}{{dx}}=\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{z}={f}\left({x},\:{y}\right),\:\mathrm{can}\:\mathrm{you}\:\mathrm{find} \\ $$$$\mathrm{these}\:\mathrm{points}\:\mathrm{through}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{method}? \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{something}\:\mathrm{like}\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\mathrm{and}\:\frac{\partial{f}}{\partial{y}}=\mathrm{0}? \\…

Can-you-Generalize-the-following-1-2-3-n-1-2-n-n-1-1-2-2-2-3-2-n-2-1-6-n-n-1-2n-1-1-3-2-3-3-3-n-3-1-2-n-n-1-2-

Question Number 2544 by Rasheed Soomro last updated on 22/Nov/15 $$\mathcal{C}{an}\:{you}\:\mathcal{G}{eneralize}\:{the}\:{following}? \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}=\frac{\mathrm{1}}{\mathrm{2}}\left({n}\right)\left({n}+\mathrm{1}\right) \\ $$$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +…+{n}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\left({n}\right)\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right. \\ $$$$\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +…+{n}^{\mathrm{3}} =\left[\frac{\mathrm{1}}{\mathrm{2}}\left({n}\right)\left({n}+\mathrm{1}\right)\right]^{\mathrm{2}}…

If-x-y-2z-k-x-2y-z-k-2x-y-z-k-k-0-then-x-2-y-2-z-2-

Question Number 133612 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{If}\:\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{2z}=\mathrm{k}}\\{\mathrm{x}+\mathrm{2y}+\mathrm{z}=\mathrm{k}}\\{\mathrm{2x}+\mathrm{y}+\mathrm{z}=\mathrm{k}}\end{cases}\:;\:\mathrm{k}\neq\:\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \:=? \\ $$$$ \\ $$ Commented by mr W last updated…

Question-68063

Question Number 68063 by TawaTawa last updated on 04/Sep/19 Answered by MJS last updated on 04/Sep/19 $$\mathrm{tricky}\:\mathrm{but}\:\mathrm{easy} \\ $$$$\left(\mathrm{1}\right)\:\:{x}^{\mathrm{3}} −\mathrm{3}{y}^{\mathrm{2}} {x}={a}+\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:{y}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} {y}={a}…