Menu Close

Category: Algebra

Let-f-be-a-function-defined-on-the-domain-D-f-C-and-f-z-cosz-for-z-D-f-Is-f-z-a-member-of-C-Compute-for-example-f-2-6i-

Question Number 1797 by 112358 last updated on 29/Sep/15 $${Let}\:{f}\:{be}\:{a}\:{function}\:{defined}\:{on} \\ $$$${the}\:{domain}\:{D}_{{f}} =\mathbb{C}\:{and}\:{f}\left({z}\right)={cosz} \\ $$$${for}\:{z}\in{D}_{{f}} \:.\:{Is}\:{f}\left({z}\right)\:{a}\:{member} \\ $$$${of}\:\mathbb{C}?\:{Compute}\:{for}\:{example} \\ $$$${f}\left(\mathrm{2}+\mathrm{6}{i}\right). \\ $$$$ \\ $$ Answered…

Simplify-log-3-4i-7-24i-

Question Number 1794 by Rasheed Soomro last updated on 29/Sep/15 $${Simplify} \\ $$$${log}_{\left(\mathrm{3}+\mathrm{4}{i}\right)} \left(−\mathrm{7}+\mathrm{24}{i}\right) \\ $$ Commented by 112358 last updated on 29/Sep/15 $${Define}\:{p}={log}_{\left(\mathrm{3}+\mathrm{4}{i}\right)} \left(−\mathrm{7}+\mathrm{24}{i}\right)…

Simplify-3-4i-3-4i-

Question Number 1791 by RasheedAhmad last updated on 29/Sep/15 $${Simplify}\:: \\ $$$$\left(\mathrm{3}+\mathrm{4}{i}\right)^{\mathrm{3}−\mathrm{4}{i}} \\ $$ Commented by 112358 last updated on 29/Sep/15 $${Define}\:{z}=\left(\mathrm{3}+\mathrm{4}{i}\right)^{\mathrm{3}−\mathrm{4}{i}} \:{and}\:{w}=\mathrm{3}+\mathrm{4}{i}. \\ $$$$\mid{w}\mid=\sqrt{\mathrm{4}^{\mathrm{2}}…

If-r-1-find-an-expression-for-T-n-r-where-T-n-r-1-r-2-r-3-r-4-r-6-r-8-r-9-r-10-r-12-r-14-r-15-r-16-r-6n-

Question Number 1789 by 112358 last updated on 26/Sep/15 $${If}\:\mid{r}\mid\neq\mathrm{1},\:{find}\:{an}\:{expression}\:{for} \\ $$$${T}_{{n}} \left({r}\right),\:{where}\: \\ $$$${T}_{{n}} \left({r}\right)=\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} +{r}^{\mathrm{4}} +{r}^{\mathrm{6}} +{r}^{\mathrm{8}} +{r}^{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{r}^{\mathrm{10}} +{r}^{\mathrm{12}} +{r}^{\mathrm{14}}…

The-n-positive-numbers-x-1-x-2-x-n-where-n-3-satisfy-x-1-1-1-x-2-x-2-1-1-x-3-x-n-1-1-1-x-n-and-x-n-1-1-x-1-Show-that-x-1-x-2-x-3-x-n-

Question Number 1777 by 112358 last updated on 22/Sep/15 $${The}\:{n}\:{positive}\:{numbers}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…{x}_{{n}} \\ $$$${where}\:{n}\geqslant\mathrm{3},\:{satisfy}\: \\ $$$${x}_{\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{2}} },{x}_{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{3}} },\:…\:,\:{x}_{{n}−\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{{n}} } \\ $$$${and}\:{x}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{1}}…

Let-a-belongs-to-an-interval-A-k-is-aconstant-such-that-k-R-and-k-lt-a-Find-out-A-in-case-a-k-a-k-a-k-a-k-

Question Number 1738 by Rasheed Sindhi last updated on 08/Sep/15 $${Let}\:\boldsymbol{\mathrm{a}}\:{belongs}\:{to}\:{an}\:{interval}\:\boldsymbol{\mathrm{A}},\boldsymbol{\mathrm{k}}\:{is}\:{aconstant}\:{such}\:{that}\: \\ $$$$\boldsymbol{\mathrm{k}}\in\mathbb{R}^{+} \:{and}\:\boldsymbol{\mathrm{k}}<\boldsymbol{\mathrm{a}}\:. \\ $$$${Find}\:{out}\:\boldsymbol{\mathrm{A}}\:{in}\:{case}: \\ $$$$\:\:\:\:\:\:\:\:\left(\:\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{k}}\right)^{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{k}}} \geqslant\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{k}}\right)^{\boldsymbol{\mathrm{a}}−\boldsymbol{\mathrm{k}}} \\ $$ Terms of Service Privacy…