Question Number 132535 by oooooooo last updated on 15/Feb/21 Answered by guyyy last updated on 15/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66995 by Sayantan chakraborty last updated on 21/Aug/19 Commented by Sayantan chakraborty last updated on 21/Aug/19 $$\mathrm{Can}\:\mathrm{anybody}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}??? \\ $$ Commented by Prithwish sen…
Question Number 1439 by Rasheed Ahmad last updated on 04/Aug/15 $${Are}\:{there}\:{two}\:{complex}\:{numbers} \\ $$$${which}\:{are}\:{cube}\:{of}\:{one}\:{another}? \\ $$$${If}\:{yes}\:{what}\:{are}\:{they}? \\ $$ Answered by 123456 last updated on 04/Aug/15 $$\begin{cases}{{x}={y}^{\mathrm{3}}…
Question Number 66969 by mr W last updated on 21/Aug/19 Commented by mr W last updated on 21/Aug/19 $${Question}\:{from}\:{B}.{E}.{H}.{I}.\:{sir}\:{reposted}. \\ $$ Answered by mr W…
Question Number 132494 by mnjuly1970 last updated on 14/Feb/21 Commented by MJS_new last updated on 14/Feb/21 $$\mathrm{sharing}\:\mathrm{these}\:\mathrm{transformations} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{check}\:\mathrm{all}\:\mathrm{solutions}!!! \\ $$$$ \\ $$$${a}^{\mathrm{1}/\mathrm{2}} +{b}^{\mathrm{1}/\mathrm{2}} ={c}^{\mathrm{1}/\mathrm{2}}…
Question Number 1418 by Rasheed Ahmad last updated on 04/Aug/15 $${Solve}\:{the}\:{following}\:{compound} \\ $$$${inequation}\:{in}\:{interval}\:\left(\mathrm{0},\:\mathrm{2}\pi\right), \\ $$$${tan}\frac{{x}}{\mathrm{2}}\:\leqslant\:−\mathrm{1}\:\:{and}\:\:{tan}\frac{{x}}{\mathrm{2}}\:<\:\mathrm{0}\:. \\ $$ Commented by 123456 last updated on 31/Jul/15 $$\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=−\mathrm{tan}\:\frac{\mathrm{3}\pi}{\mathrm{4}}=\mathrm{tan}\:\frac{\mathrm{5}\pi}{\mathrm{4}}=−\mathrm{tan}\:\frac{\mathrm{7}\pi}{\mathrm{4}}=\mathrm{1}…
Question Number 132470 by physicstutes last updated on 14/Feb/21 $$\int\:\mathrm{tan}^{\mathrm{3}} {x}\:{dx} \\ $$ Answered by mindispower last updated on 14/Feb/21 $$\int{tg}\left({x}\right)\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)\right){dx}−\int{tg}\left({x}\right){dx} \\ $$$$=\frac{{tg}^{\mathrm{2}} \left({x}\right)}{\mathrm{2}}+{ln}\mid{cos}\left({x}\right)\mid+{c}…
Question Number 1358 by tabrez8590@gmail last updated on 25/Jul/15 $${solve} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6} \\ $$ Commented by Rasheed Soomro last updated on 25/Jul/15 $${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}=?…
Question Number 1354 by Rasheed Ahmad last updated on 25/Jul/15 $${Slightly}\:{modified}\:{form}\:{of}\:{Q}\:\mathrm{1343}. \\ $$$$\mathrm{3}^{{log}\left(\mathrm{3}{x}+\mathrm{4}\right)} =\mathrm{4}^{{log}\left(\mathrm{4}{x}+\mathrm{3}\right)} ,{solve}\:{for}\:{x}. \\ $$ Commented by prakash jain last updated on 25/Jul/15…
Question Number 1355 by Rasheed Ahmad last updated on 25/Jul/15 $$\mathrm{8}^{{log}\:\left(\mathrm{12}{x}+\mathrm{1}\right)} =\mathrm{4}^{{log}\:\mathrm{27}} \:\:\:,{solve}\:{for}\:{x}. \\ $$ Answered by Yugi last updated on 25/Jul/15 $${Rewriting}\:{the}\:{above}\:{equation}\:{in}\:{base}\:\mathrm{2}\:{gives} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{3}{log}\left(\mathrm{12}{x}+\mathrm{1}\right)}…