Question Number 131932 by kaivan.ahmadi last updated on 09/Feb/21 $${if}\:{x}=\mathrm{18}\:{and}\:{y}=\mathrm{17}\:{then}\:{find} \\ $$$$\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right)\left({x}^{\mathrm{8}} +{y}^{\mathrm{8}} \right) \\ $$ Answered by Dwaipayan Shikari last…
Question Number 850 by sagarwal last updated on 25/Mar/15 $$\mathrm{Solve}\:\mid\mathrm{2}{x}+\mathrm{4}\mid\geqslant\mathrm{14} \\ $$ Answered by 123456 last updated on 25/Mar/15 $$\mid\mathrm{2}{x}+\mathrm{4}\mid\geqslant\mathrm{14} \\ $$$$\mathrm{2}{x}+\mathrm{4}\leqslant−\mathrm{14}\vee\mathrm{2}{x}+\mathrm{4}\geqslant\mathrm{14} \\ $$$$\mathrm{2}{x}\leqslant−\mathrm{18}\vee\mathrm{2}{x}\geqslant\mathrm{10} \\…
Question Number 66381 by aliesam last updated on 13/Aug/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66382 by ajfour last updated on 13/Aug/19 $${Give}\:{me}\:{any}\:{Quintic},\:{i}\:{shall}\:{solve} \\ $$$${it}.\:{For}\:{sure}! \\ $$$${At}^{\mathrm{5}} +{Bt}^{\mathrm{4}} +{Ct}^{\mathrm{3}} +{Dt}^{\mathrm{2}} +{Et}+{F}=\mathrm{0} \\ $$$${wont}\:{even}\:{assume}\:{A}=\mathrm{1},\:{or}\:{B}=\mathrm{0}. \\ $$$${but}\:{if}\:{A}+{C}+{E}={B}+{D}+{F}\: \\ $$$${then}\:{my}\:{formula}\:{dont}\:{work} \\…
Question Number 798 by 123456 last updated on 15/Mar/15 $$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{3}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\centerdot\centerdot\centerdot}}}} \\ $$ Answered by prakash jain last updated on 15/Mar/15 $$\mathrm{Ramanujan}'{s}\:\mathrm{Formula} \\ $$$${x}+\mathrm{1}=\sqrt{\mathrm{1}+{x}\sqrt{\mathrm{1}+\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+\left({x}+\mathrm{2}\right)\sqrt{\mathrm{1}+…}}}} \\ $$$$\mathrm{For}\:{x}=\mathrm{2}…
Question Number 66302 by ajfour last updated on 12/Aug/19 $${solved}\:{the}\:{general}\:{quintic}, \\ $$$${despite}\:{whatever}\:{proof}\:{that}\:{it} \\ $$$${cant}\:{be}\:{solved}\:{in}\:{a}\:{simple}\:{way}! \\ $$ Commented by mr W last updated on 12/Aug/19 $${i}\:{knew}\:{you}'{ll}\:{tell}\:{us}\:{the}\:{good}\:{news}.…
Question Number 66290 by hmamarques1994@gmail.com last updated on 12/Aug/19 $$\:\sqrt[{\sqrt{\mathrm{3}}}]{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:+\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{3}}} \:−\:\mathrm{392}\:=\:\mathrm{0} \\ $$ Answered by Tanmay chaudhury last updated on 12/Aug/19 $$\left({x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} +{x}^{\sqrt{\mathrm{3}}}…
Question Number 749 by 123456 last updated on 06/Mar/15 $${x}=\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\centerdot\centerdot\centerdot}}}}}} \\ $$$${y}=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\centerdot\centerdot\centerdot}}}}}} \\ $$$${wich}\:{statment}\:{is}\:{true}? \\ $$$${a}.\:{xy}=\mathrm{4}\vee{xy}=\mathrm{0}\vee{x}+{y}=\mathrm{4}\vee{x}+{y}=\mathrm{2} \\ $$$${b}.\:{x}\notin\mathbb{Z} \\ $$$${c}.{xy}\notin\mathbb{Z} \\ $$$${d}.{x}+{y}\notin\mathbb{Z} \\ $$ Answered…
Question Number 739 by malwaan last updated on 08/Mar/15 $${solve}\:{x}^{\mathrm{2}} −\mathrm{7}{y}^{\mathrm{2}} =\mathrm{1}\:{in}\:{Z} \\ $$ Commented by 123456 last updated on 06/Mar/15 $${S}=\left\{\left({x},{y}\right)\in\mathbb{Z}^{\mathrm{2}} \mid{x}^{\mathrm{2}} −\mathrm{7}{y}^{\mathrm{2}} =\mathrm{1}\right\}…
Question Number 733 by 123456 last updated on 05/Mar/15 $$\mid\mid\mid\mid\mid\mid\mid{x}^{\mathrm{2}} −{x}−\mathrm{1}\mid−\mathrm{3}\mid−\mathrm{5}\mid−\mathrm{7}\mid−\mathrm{9}\mid−\mathrm{11}\mid−\mathrm{13}\mid \\ $$$$={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{48} \\ $$$${find}\:{all}\:{x}\:{real}\:{that}\:{is}\:{solution}\:{of}\:{above} \\ $$$${equation} \\ $$ Answered by prakash jain last…