Menu Close

Category: Arithmetic

If-log-6-30-a-log-15-24-b-evaluate-log-12-60-

Question Number 147334 by Tawa11 last updated on 19/Jul/21 $$\mathrm{If}\:\:\:\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:\:\:=\:\:\:\mathrm{a},\:\:\:\:\:\:\:\:\:\mathrm{log}_{\mathrm{15}} \mathrm{24}\:\:\:=\:\:\:\mathrm{b},\:\:\:\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:\mathrm{log}_{\mathrm{12}} \mathrm{60} \\ $$ Commented by otchereabdullai@gmail.com last updated on 20/Jul/21 $$\mathrm{nice}! \\ $$…

Question-147252

Question Number 147252 by mathlove last updated on 19/Jul/21 Answered by Olaf_Thorendsen last updated on 19/Jul/21 $${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+\left(\frac{\mathrm{1}}{\mathrm{5}}+…\right)^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${l}\:=\:\left(\frac{\mathrm{1}}{\mathrm{5}}+{l}\right)^{\mathrm{2}} \\ $$$${l}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{5}}{l}+\frac{\mathrm{1}}{\mathrm{25}}\:=\:\mathrm{0} \\…

Question-81311

Question Number 81311 by M±th+et£s last updated on 11/Feb/20 Commented by mind is power last updated on 11/Feb/20 $$\Gamma\left({n}+{x}\right)=\left({n}−\mathrm{1}+{x}\right)\left({n}−\mathrm{2}+{x}\right)…{x}\Gamma\left({x}\right)\:\: \\ $$$$\Gamma\left({n}+{x}\right)=\Gamma\left({x}\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({n}−{k}+{x}\right) \\ $$$$\Rightarrow\Gamma\left({n}+\mathrm{1}−\frac{{k}}{{n}}\right)=\Gamma\left(\mathrm{1}−\frac{{k}}{{n}}\right)\underset{{j}=\mathrm{1}}…

How-to-calculate-the-last-two-digits-of-2-576-

Question Number 15770 by arnabpapu550@gmail.com last updated on 13/Jun/17 $$\mathrm{How}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{576}} \\ $$ Answered by Tinkutara last updated on 14/Jun/17 $$\mathrm{2}^{\mathrm{576}} \:=\:\mathrm{2}^{\mathrm{4}×\mathrm{144}} \:\equiv\:\mathrm{6} \\ $$$$\mathrm{Last}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{6}. \\…

Question-81222

Question Number 81222 by M±th+et£s last updated on 10/Feb/20 Answered by mind is power last updated on 10/Feb/20 $$\:\:_{\mathrm{1}} {F}_{{a}} \left(\mathrm{1};\frac{{a}+{b}}{{a}},\frac{{a}+{b}−\mathrm{1}}{{a}},…….,\frac{{b}+\mathrm{1}}{{a}};\frac{{x}}{{a}^{{a}} }\right) \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{{k}!}{\underset{{j}=\mathrm{0}}…

Prove-by-mathematcal-induction-that-1-1-1-2-1-1-2-3-1-1-2-3-n-2n-n-1-

Question Number 15671 by tawa tawa last updated on 12/Jun/17 $$\mathrm{Prove}\:\mathrm{by}\:\mathrm{mathematcal}\:\mathrm{induction}\:\mathrm{that} \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}}\:+\:…\:+\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:…\:\mathrm{n}}\:=\:\frac{\mathrm{2n}}{\mathrm{n}\:+\:\mathrm{1}} \\ $$ Answered by icyfalcon999 last updated on 12/Jun/17 $$\left.\mathrm{1}\right)\mathrm{proving}\:\mathrm{that}\:\mathrm{the}\:\mathrm{statement}\:\mathrm{true}\:\mathrm{when}\:\mathrm{n}=\mathrm{1} \\ $$$$\mathrm{R}.\mathrm{H}.\mathrm{S}.=\frac{\mathrm{2}\left(\mathrm{1}\right)}{\mathrm{1}+\mathrm{1}}=\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1}=\mathrm{L}.\mathrm{H}.\mathrm{S}.…