Menu Close

Category: Arithmetic

Six-friends-have-an-average-height-of-167-cm-Mike-with-height-162-cm-leaves-What-is-the-new-average-

Question Number 92 by michelle last updated on 25/Jan/15 $$\mathrm{Six}\:\mathrm{friends}\:\mathrm{have}\:\mathrm{an}\:\mathrm{average}\:\mathrm{height}\:\mathrm{of}\:\mathrm{167}\:\mathrm{cm} \\ $$$$\mathrm{Mike}\:\mathrm{with}\:\mathrm{height}\:\mathrm{162}\:\mathrm{cm}\:\mathrm{leaves}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{new}\:\mathrm{average}? \\ $$ Commented by Rasheed Soomro last updated on 09/Jun/16 $$\mathcal{T}{otal}\:{of}\:{six}\:{friends}'\:{heights}=\mathrm{167}×\mathrm{6}…

the-sum-to-infinity-of-a-Geometric-series-is-S-the-sum-to-infinty-of-the-squares-of-the-terms-of-the-series-is-2S-the-sum-to-infinity-of-the-cubes-of-the-terms-of-the-series-is-64-13-S-find-the-

Question Number 78493 by Rio Michael last updated on 18/Jan/20 $${the}\:{sum}\:{to}\:{infinity}\:{of}\:{a}\:{Geometric}\:{series}\:{is}\:{S} \\ $$$${the}\:{sum}\:{to}\:{infinty}\:{of}\:{the}\:{squares}\:{of}\:{the}\:{terms} \\ $$$${of}\:{the}\:{series}\:{is}\:\mathrm{2}{S} \\ $$$${the}\:{sum}\:{to}\:{infinity}\:{of}\:{the}\:{cubes}\:{of}\:{the}\:{terms} \\ $$$${of}\:{the}\:{series}\:{is}\:\frac{\mathrm{64}}{\mathrm{13}}{S}. \\ $$$${find}\:{the}\:{value}\:{of}\:{S}\:{and}\:{write}\:{iut}\:{the}\:{first} \\ $$$$\mathrm{3}\:{terms}\:{if}\:{the}\:{series}. \\ $$…

Question-12829

Question Number 12829 by tawa last updated on 03/May/17 Answered by mrW1 last updated on 03/May/17 $$\left(\mathrm{1}\right) \\ $$$${let}'{s}\:{say}\:{the}\:{mean}\:{mark}\:{of}\:{the}\:\mathrm{6}\:{students} \\ $$$${who}\:{passed}\:{is}\:{x}. \\ $$$${the}\:{total}\:{mark}\:{of}\:{the}\:\mathrm{2}\:{students}\:{who} \\ $$$${failed}\:{is}\:{y}.…

The-sum-of-two-positive-numbers-is-20-find-the-numbers-i-If-their-product-is-maximum-ii-If-the-sum-of-their-square-is-maximum-iii-If-the-product-of-the-square-of-one-and-the-cube-of-the-othe

Question Number 12796 by tawa last updated on 01/May/17 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{positive}\:\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{20}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{numbers} \\ $$$$\left(\mathrm{i}\right)\:\:\mathrm{If}\:\mathrm{their}\:\mathrm{product}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{ii}\right)\:\:\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{square}\:\mathrm{is}\:\mathrm{maximum} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{If}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{one}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{is}\:\mathrm{maximum} \\ $$ Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/May/17…

Question-12760

Question Number 12760 by tawa last updated on 30/Apr/17 Answered by mrW1 last updated on 01/May/17 $${Q}\mathrm{5} \\ $$$${total}\:{number}\:{of}\:{ways}\:{for}\:{Sofia}\:{and}\:{Tesa}\: \\ $$$${each}\:{to}\:{choose}\:{one}\:{integer}\:{from}\:\mathrm{1}\:{to}\:\mathrm{10}: \\ $$$$\mathrm{10}×\mathrm{10}=\mathrm{100} \\ $$$$…

Prove-3-111-1-223-

Question Number 143794 by Huy last updated on 18/Jun/21 $$\mathrm{Prove}\:\:\:\:\:\:\:\:\:\mathrm{3}^{\mathrm{111}} +\mathrm{1}\vdots\mathrm{223} \\ $$ Commented by TheHoneyCat last updated on 18/Jun/21 $${sorry}\:{for}\:{my}\:{ignorance}; \\ $$$${what}\:{does}\:{a}\vdots{b}\:{means}? \\ $$$${I}'{ve}\:{notices}\:{it}\:{is}\:{defined}\:{on}\:{integers}…

Question-12605

Question Number 12605 by tawa last updated on 26/Apr/17 Answered by ajfour last updated on 26/Apr/17 $${let}\:{painter}\:{worked}\:{for}\:{N}\:{days}\:. \\ $$$$\mathrm{40}{N}+\mathrm{10}\left({N}−\mathrm{10}\right)=\mathrm{2000} \\ $$$$\mathrm{50}{N}=\mathrm{2100}\:\:\:\Rightarrow\:\:{N}=\mathrm{42} \\ $$$${assistant}\:{worked}\:{N}−\mathrm{10}\:=\mathrm{32}\:{days} \\ $$$${he}\:{received}\:=#\mathrm{320}\:.…

Given-that-r-0-4-6r-2-r-1-n-5r-work-out-the-value-of-n-

Question Number 77953 by pete last updated on 12/Jan/20 $$\mathrm{Given}\:\mathrm{that}\:\underset{\mathrm{r}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}\mathrm{6r}\:=\mathrm{2}\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{5r},\:\mathrm{work}\:\mathrm{out}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{n}. \\ $$ Answered by john santu last updated on…